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A recapitulation is first given of a recent theory of homogeneous turbulence 
based on the condition that the Fourier amplitudes of the velocity field be 
as randomly distributed as the dynamical equations permit. This theory 
involves the average infinitesimal-impulse-response functions of the Fourier 
amplitudes and employs a new kind of perturbation method which yields 
what are believed to be exact expansions of third- and higher-order statistical 
moments of the Fourier amplitudes in terms of second-order moments and 
these response functions. 

In  the present paper the theory is applied in lowest approximation (called the 
direct-interaction approximation) to stationary isotropic turbulence of very 
high Reynolds number. The characteristic wave-number k, = E/W; and Reynolds 
number R, = v,k;l/v, where vo is the r.m.s. velocity in any given direction, t. is 
the power dissipated per unit mass, and v is the kinematic viscosity, are intro- 
duced. For Ri 9 1, it is found that the inertial and dissipation ranges extend over 
wave-numbers E satisfying k, 4 k 4 ROE,. The time-correlation and average 
infinitesimal-impulse-response functions of the Fourier amplitudes in these 
ranges are evaluated. They are found to be asymptotically identical and given by 
~ ( 2 v o k ~ ) / v o k r ,  where r is the time interval. 

The energy spectrum in these ranges is determined by a non-linear integral 
equation, involving the time-correlation and response functions, which is suitable 
for solution by iteration. The solution is of the form E(k)/v,v = (k/k,)-Qf(k/k,) ,  
where E(k)  is the three-dimensional spectrum function, k, = Rtk, is a wave- 
number characterizing the dissipation range, andf (klk,) is a universal function. In  
theinertialrange, E ( k )  = f(0) ( E V , ) ~  k-8, asymptotically. Theparameterf(0) canbe 
obtained by quadratures, without solving the integral equation for E(k) .  Spectral 
energy transport throughout the inertial and dissipation ranges is found to 
proceed by a cascade process essentially local in wave-number space; the direct 
power delivered by all modes below k to all modes above k’ 9 k is of order 
s(k/k’)g if k and k‘ both lie within the inertial range. The mean-square velocity 
derivatives of all orders are found to be finite. For Ri 9 1 the skewness factor of 
the distribution of the nth-order longitudinal velocity derivative is found to have 
the asymptotic form A,R;*, where A, is a universal constant. 

The theory is compared with experiment and is found to be slightly better 
supported than the Kolmogorov theory. However, it  is stressed that extreme 
caution must be exercised in interpreting the experimental evidence as support for 
either theory. 
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An analysis is given of the relations between the Kolmogorov theory, Heisen- 
berg’s heuristic theory, the analytical theories of Heisenberg and Chandrasekhar, 
the theories of Proudman & Reid and Tatsumi, and the present theory. 
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1. Introduction 
An attempt has been made recently to  develop an exact theory of homogeneous 

turbulence in which all the statistical moments of the velocity field are derived 
analytically from the Navier-Stokes equation (Kraichnan, 1958a, b ;  the first 
reference will be cited as Paper I). In the present paper an approximation to 
this theory is used to examine the energy dynamics and the spectral structure, 
with respect to both frequency and wave-number, of the inertial and dissipation 
ranges of very-high-Reynolds-number stationary, isotropic turbulence. The 
statistical equations of motion for the stationary isotropic case obtained in 
Paper I are not rederived here, but we shall preface our investigation with a 
recapitulation, and, in part, an amplification, of the foundations of the theory. 
This seems especially advisable since the foundations have undergone consider- 
able evolution since the writing of Paper I; in particular, that paper contains an 
important misconception. A full account of the basic theory in its present state 
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wil l  be given elsewhere. In  discussing it here, the emphasis wil l  be upon illumi- 
nating the principles involved, and no attempt a t  rigorous or complete treatment 
will be made. 

The essential difficulties of the turbulence problem arise from the strongly 
dissipative character of the dynamical system and the non-linearity of the 
equations of motion. The first of these two characteristics effectively precludes 
treatment by conventional methods of statistical mechanics. The second is 
responsible for the fact that the Navier-Stokes equation does not yield closed 
differential equations for the velocity covariance, the statistical quantity of 
principal interest. The equations of motion for this covariance contain third- 
order moments of the velocity field, the equations of motion for the third-order 
moments contain fourth-order moments, and so forth, ad injinitum. A central 
goal of turbulence theory is the closing of this infinite chain of coupled equations 
into a determinate set containing only moments below some finite order. 

Closure has been obtained in a number of previous treatments of homogeneous 
turbulence by the assumption of expressions, in terms of second-order moments, 
for either third-order moments (Obukhov 1941 ; Heisenberg 1948; von KiLrmiLn 
1948; KoviLsznay 1948) or fourth-order moments (Millionshtchikov 1941 ; 
Heisenberg 1948; Proudman & Reid 1954; Chandrasekhar 1955; Tatsumi 1957). 
The assumptions made were justified on heuristic grounds, on the basis of experi- 
mental indications, or on grounds of mathematical simplicity. 

In the present approach no ad hoc assumption relating higher-order to lower- 
order moments is made. The velocity field within a very large volume is repre- 
sented by Fourier series amplitudes ui(k, t ) ,  which are considered to be the 
fundamental dynamic variables. In  addition to the moments of the many-time 
joint-distribution of all the Fourier amplitudes, the average impulse-response 
tensors of the Fourier modes are introduced. These quantities, which do not 
appear in the treatments cited in the last paragraph, describe the relaxation of 
arbitrary infinitesimal impulsive disturbances of individual vector Fourier 
amplitudes. The fundamental condition imposed is that the statistical depen- 
dence among the Fourier amplitudes is induced wholly by the non-linear terms 
in the Navier-Stokes equation and not at all by the initial conditions or by the 
external forces which may be acting. This condition, which we term that of 
maximal randomness, implies statistical homogeneity, and is more restrictive 
than that condition. It appears to be the simplest condition strong enough to 
give, in principle, a closeable statistical theory from the Navier-Stokes equation, 
and it seems logically indicated when the mechanism by which the turbulence is 
produced or maintained is not explicitly described. 

Maximal randomness and certain qualitative features of the Navier-Stokes 
equation lead to the principle of weak dependence of the Fourier amplitudes. The 
essential qualitative content of this principle is that the effective dynamical 
coupling and statistical interdependence among any few individual Fourier 
amplitudes corresponding to different wave vectors is very weak when the flow 
volume is very large. The substantial departure from normality of the velocity 
distribution in x-space appears a9 the summed effect of very many of these very 
weak statistical dependence 
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The weak dependence principle leads to a perturbation treatment of the 
dynamical couplings among sets of individual Fourier amplitudes which differs 
importantly from conventional perturbation theory based on expansion in 
powers of the Reynolds number. This treatment yields what are believed to be 
exact infinite-series integral representations of all higher-order moments in terms 
of the second-order moments and the average impulse-response tensors. Integral 
equations fixing the second-order moments and the impulse-response tensors may 
then be obtained; they involve the representations for the third-order moments. 
If the representations are exact, these equations are also. 

In  order for the theory to be used, the infinite-series representations must be 
approximated. In  the present paper, as in Paper I ,  the series for the third-order 
moments are approximated by their lowest terms. This procedure, which we 
term the direct-interaction approximation, has a simple dynamical significance 
and can be shown to lead to equations which are self-consistent in the sense that 
they yield rigorously realizable second-order moments. The direct-interaction 
approximation includes terms of all orders in an expansion in powers of the 
Reynolds number. It is the lowest of a sequence of self-consistent and dynami- 
cally interpretable approximations which, it is believed, should converge to yield 
exact and complete solutions of the statistical problem. The higher approxima- 
tions involve closure of the moment-equation heirarchy at higher levels. Each 
successive approximation is based on new perturbation expansions, the lowest 
terms of which represent terms of all orders in the expansions used in the im- 
mediately preceding approximation. In  each case, only these lowest terms are 
retained. 

The reader who is not interested in the foundations of the present theory, but 
only in its application, may start this paper with $3. In  this case the fundamental 
relations (3.7) and (3.11) may be regarded simply as an assumption about the 
form of the triple moments, analogous to  those in the theories cited previously. 
The essential physical interpretation of this assumption, from the point of view 
of its consequences for the transport of energy, is then brought out in the dis- 
cussion following equation (4.3). 

2. Foundations of the theory 
2.1. The maximal randomness condition 

Let us consider a fluid confined in a cubical box of side L. Instead of requiring 
that the velocity vanish.at the walls we shall employ the well-known artifice of 
cyclic boundary conditions; later, this will permit the description of rigorously 
statistically homogeneous flows. The velocity field G&x, t )  may be expanded in 
a Fourier series 

where the summation is over all wave-vectors permitted by the boundary condi- 
tions. For compactness, we shall often write u(k) for u(k, t ) ,  u‘(lc) for u(k, t ’ ) ,  etc. 
The reality of G&x) requires ui( - k) = u:(k). In  terms of the Fourier amplitudes, 
the Navier-Stokes equation takes the form 

Ef(x, t )  = Cui(k, t )  e i k V r ,  (2.1) 
k 
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where v is the kinematic viscosity and the tensor operator 

ejm(k) = kmcj(k)+Ic,&,(k), cj(k) = 8ij-k-2k,kj, 

50 1 

serves to include both Reynolds stresses and pressure forces. The latter maintain 
the incompressibility property 

k,ui(k) = 0. (2.3) 

We regard the amplitudes u(k) as the fundamental dynamic variables. 
Formulation of the flow problem in terms of Fourier series rather than Fourier 
integrals is preferred because it seems to be easier to think of dynamic variables 
in intuitive terms when they form a discrete set. 

In  all of the following we shall assume that there is no mean flow, so that 

Let us imagine that at t = to an arbitrary infinitesimal solenoidal perturbing 
force-term &(k) is introduced on the right side of (2 .2) ,  for a single wave-vector k. 
We may expect that the perturbation induced in u(k) will be of the form 

u(0, t )  = 0. 

6ui(k, t )  = &(k; t ,  t ’ )  &(k, t ’ )  dt’, (2.4) I 
where l&(k; t ,  t’) is the infinitesimal-impulse-response tensor for mode k. (We 
shall sometimes use the abbreviation &(k).) If the dynamical equations were 
linear and time-independent, the impulse-response would be a function only of 
k and t - t ’ .  Since actually (2 .2 )  is essentially non-linear, &(k; t, t ’ )  is really an 
implicit functional of all the Fourier amplitudes at all times between t’ and t .  
It expresses the relaxation of an infinitesimal impulsive disturbance (imposed 
at t ’ )  through the joint action of viscosity and the non-linear interaction. The 
determination of the &(k) is in general not less of a problem than finding the 
u(k) themselves. The impulse-response tensors play an essential role in the theory 
to be described. 

Now let us take L very large compared to any characteristic length scale of the 
flow and consider the limit L + 03. For any flow of physical interest we may 
expect that in any excited wave-vector range, no matter how small, the excitation 
will be spread over an infinite number of individual modes in the limit. Hereafter 
we shall admit to consideration only such flows. This property leads to a dynamical 
consequence of basic importance. Any given wave-vector p appears in only two 
terms on the right of ( 2 . 2 ) ,  once as k and once as k”. In  the limit L -+ 03 these 
two terms can make only an infinitesimal contribution to the summation, and 
hence to the time dependence of u(k) and &.(k). This suggests that the effective 
dynamical coupling between u(k) and u(p) (k + f p) becomes infinitely weak as 
L-+oo. By an extension of the argument, the effective dynamical coupling 
among any finite set of Fourier amplitudes corresponding to distinct wave- 
vectors becomes infinitely weak in the limit. (We shall call a set of wave-vectors 
distinct when they contain no pair p, q such that p = f 9.) 

So far our considerations have been non-statistical. Now, in order to describe 
turbulence, we introduce averages () over products of the u(k) and &(k). The 
averages which appear in the present paper are to be interpreted as over an 
ensemble of flows, in accordance with the most usual practice in statistical 
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mechanics. However, for the statistically homogeneous systems which are to be 
treated we consider it more physical to define averages in terms of a single system 
(the actual physical one) by taking them over the infinitely many modes con- 
tained in appropriately chosen tiny neighbourhoods in k-space, in the limit 
L + co. This single-system average corresponds closely to the experimental 
procedure of determining spectral quantities; we shall discuss its advantages 
further in a later paper. If the choice of ensemble is physically appropriate, the 
two kinds of average should be interchangeable for L -+ co. 

The fundamental restriction we shall impose on the flow is that the statistical 
dependence among the u(k) be induced wholly by the non-linear terms in (2.2) 
and not at all by initial conditions or any external forces, representable by addi- 
tional terms in (2.2), which may be acting. We shall call this the maximal random- 
ness condition. In  the present paper we shall also include under this title the 
symmetry conditions that the real and imaginary parts of u(k) have zero means, 
identical auto-covariances, and are uncorrelated. Now complete statistical 
independence of the u(k), together with our symmetry conditions, implies 
statistical homogeneity.? Since the Navier-Stokes equation is invariant under 
translation it cannot of itself induce inhomogeneity. Hence, we may anticipate 
that maximal randomness restricts us to statistically homogeneous flows. The 
restriction actually is much more severe. Consider a flow consisting initially of an 
infinite array of identical vortices with centres placed at random. It is statistically 
homogeneous, but it is excluded because at any finite time of evolution it will 
display statistical dependencies among distinct wave-vectors due to the far- 
from-maximally random initial conditions. 

The notion of maximal randomness seems to be implicit in many theoretical 
treatments of turbulence; few workers would call the flow just described ‘homo- 
geneous turbulence’. We believe, however, that explicit appeal to  this condition, 
or one of equivalent strength, is necessary to pose a statistical problem which is 
closeable evenin principle. For certainly there can exist statistically homogeneous 
flows with a given wave-number spectrum, at some given time in their evolution, 
but with widely different higher statistical structures. None of these flows is 
excluded simply by the usual procedure of taking averages of the Navier-Stokes 
equation, and the future history of the various flows surely will be influenced 
by the differences in higher structure. Maximally random flow is a considerable 
idealization of laboratory homogeneous turbulence. But unless the mechanism 
which generates or maintains the turbulence is explicitly described by additional 
terms in (2.2), our condition appears to be the most reasonable way to pose 
a physically and mathematically determinate problem. It should be noted that 
maximal randomness is not a condition on the Reynolds number, although 
the correspondence to laboratory flows probably is closer at higher Reynolds 
numbers. 

t Invariance of averages of x-space quantities under translation is implied by the vanishing 
of all averages (uI(k) u;(p) ...) unless k+p+ ... = 0. Our symmetry conditions give 
(u,(k) u;(k)) = 0. Averages in which a given u(k) appears more than bilinearly cannot 
contribute to x-space averages when L + co, for the spectrally dense flows to which we 
have already restricted attention. 
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2.2.  The weak dependence principle 

We have already noted the property of weak dynamical coupling among any 
finite set of Fourier amplitudes in the limit L -+ 00. Under the maximal random- 
ness condition, statistical interdependence among the u(k) can arise only from 
these weak couplings. We are led to conjecture that in this case the statistical 
dependencies among any finite set of u(k) become infinitely weak in the limit. 
A corollary is that the statistical dependencies among both the u(k) and the 
&(k) for distinct wave-vectors become infinitely weak. We shall call these 
conjectures the weak dependence principle and state them more formally as 
follows. 

Let the normalized Fourier amplitudes be defined as the quantities 

Then, all moments of the many-time distribution of the response tensors and 
normalized Fourier amplitudes belonging to any finite set of k’s tend in the limit 
L --f co to values belonging to some distribution in which all quantities associated 
with distinct k’s are statistically independent. 

The following typical examples will serve to illustrate the principle. Let k, p, q 
be three distinct wave-vectors. Then weak dependence requires 

As a second example we have 

(4 (k) Uj( - k) . 2 P )  -PI)  -+ ( N k )  Uj(  - k)) (uh(P) u,( -P)) ( L  -+ a). (2.6) 

It is extremely important to distinguish clearly between weak dependence, 
which can be defined only in terms of a limiting process, and independence of 
the Fourier amplitudes, certain restricted consequences of which have been as- 
sumed by Millionshtchikov (1941), Heisenberg (1948), Proudman & Reid (1954), 
Chandrasekhar (1955), Tatsumi (1 957), and other authors. It is known experi- 
mentally that the full probability distribution of the velocity field is far from 
normal (Batchelor 1953). In  particular, the skewness and flatness factor; of the 
difference between the velocities at two points depart from normal values. As 
a complement to the experimental evidence, it is clear from the Navier-Stokes 
equation that non-vanisking triple moments are necessary for mean energy 
transfer, and it has been shown from this equation that the relation of fourth- 
order to second-order moments is non-normal (Kraichnan 1957). By the central 
limit theorem, these facts are inconsistent with independence of the u(k) in the 
limit L+m. However, they are wholly consistent with weak dependence. 
Consider the moment M = ((a.ii1/ax1)3) which, when normalized, gives the skew- 
ness factor of the distribution of a q a x , .  Expanding, and assuming homogeneity, 

Now consider the contribution from all terms with k, p ,  q below some arbitrary 
high wave-number K .  As L + 00, corresponding to a larger and larger box of 
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turbulence, the number of allowed wave-vectors in this range varies as L3 and the 
number of such terms as L6. The quantities (lu(k)12) vary as L4, since 

ac (lu(k)12) 
k 

is the energy per unit mass. Thus, M can approach a non-zero limit if the left side 
of (2 .5 )  varies as L-s, for k + p + q = 0. 

The case of the moment N = ((aZl/i3xl)4), which determines the flatness factor 
of the distribution of a.ii,/ax,, is somewhat more complicated. Writing 

we may break the sum on the right into a part in which k, p, q, m are equal and 
opposite in pairs and a part in which they are not. It follows from (2 .6)  that as 
L -+ og the first part gives a contribution to N which by itself would yield the 
flatness factor 3, corresponding to a normal distribution of a.iz1/axl. In  an inde- 
pendent distribution of the u(k) the second part would contribute zero. With 
weak dependence, although the terms composing this part tend individually to 
zero, even when normalized, their total contribution need not, just as in the case 
of the terms contributing to (2.7). 

The examples just treated suggest that weak dependence relations of the type 
(2.5) may represent necessary conditions for statistical homogeneity and bounded- 
ness of x-space moments. If relations of the type (2 .6)  are also consequences of 
homogeneity,? weak dependence can be viewed as a kinematical property with- 
out reference to the Navier-Stokes equation. Our point of view here is quite 
different. We regard both homogeneity and weak dependence as consequences 
obtained by dynamical considerations from the maximal randomness condition, 
and, as will be discussed in 5 2.3, we find weak dependence to be the key dynamical 
property which permits actual evaluation of the cross-moments of the u(k). This 
is also the case in certain more general applications than those to be considered 
here, where the maximal randomness condition is not satisfied by the initial 
conditions. 

2.3 The perturbation method 

The evaluation of the cross-moments of the u(k) with the aid of the considera- 
tions developed above involves a perturbation method with features that appear 
to be novel in fluid mechanics. In  order to bring out the distinctive characteristics 
of the method with greater clarity, we first shall illustrate how one might attempt 
to evaluate cross-moments by conventional perturbation techniques. Let us 
consider the moment 

s = (u,(k) 4 ( P )  4 q ) )  (k + P + 9 = 019 (2.9) 

where k, p, q are distinct wave-vectors. Moments of this type appear in the 
equations of motion for the covariance (u;( - k) u,(k)). In  accord with maximal 
randomness, let us assume that the flow is started at time to with the u(k,to) 
independently and Gaussianly distributed and with specified values of the 

7 There is evidence that this is the case. However, we have not found discussions of 
relations of this type in the literature on statistical homogeneity. 
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quantities (ui(k, to) u,( - k, to)) for all k. Let us denote by G(k) the amplitudes 
which obey G(k, to) = u(k, to) and satisfy the linearized equation of motion 

($ + vk2) u,(k) = 0. (2.10) 

We may immediately solve for ti(k, t)  in terms of u(k, to) and then express all the 
moments of the many-time distribution of the dashed quantities by using the 
initial conditions. 

Now if an appropriate Reynolds number were sufficiently low, we could pro- 
ceed by treating the non-linear terms in (2.2) as a perturbation and expanding the 
u(k) by iteration in terms of the ii(k). Integrating (2.2),  we have 

k’+k’=k s’ to 

i 
u,(k) = Gi(k) - &,,(k) exp [ - vk2(t - t’)]u;(k‘) z&(k”) dt‘. (2.11) 

To obtain, on the left, the first-order approximation to u(k) we replace u on the 
right by Z. To continue the procedure, we successively insert on the right the 
expressions, for the various amplitudes, given by the previous approximation. 
It is clear that this results in an expansion for u( k) in ascending orders of the ti( k). 
For t - to the order of some characteristic time of the turbulence this is effectively 
an expansion in powers of some typical Reynolds number. 

The lowest-order non-vanishing contribution to S is given by 

SI = (Aun(k) a P )  a q ) )  + (%@) AUXP) a q ) )  + (%m EXP) AuXq)), (2.12) 

where Aun(k) + G,(k) is the first-order approximation to u,(k), etc. By (2.1 1)  we 

Au,(k) = C,+(k; t,t”)g$(k,t”)dt”+ ..., (2.13) 
have 1 

io 
with corresponding expressions for Aui(p), Aui(q), where 

gmi(k; t, t”) = S,, exp [ - vk2(t - t”)] 

(2.14) 1 
- 

and b,(k) = - iG,,(k) q - P) Em( - 91, 

b,(P) = -;&j,(p)uj(-q)u,(-k), 

b,(q) = - iG&l) uj( - k) -PI. 

- 

- 

The terms denoted by dots on the right of (2.13) involve unperturbed amplitudes 
with wave vectors other than k, f p, q. No factors of 4 appear in (2.14) 
because, to take b(k), - p appears on the right of (2.11) once as k’ and once as k”. 
(Note that P,,,(k) = P&(k).) We have written things in a rather elaborate 
fashion in order to facilitate later comparisons. 

The ii(k, to) and hence the ii(k, t) are statistically independent for distinct k’s. 
Thus it is clear that only the term shown explicitly in (2.13) can contribute to the 
averages in (2.12). Inserting expression (2.14) in (2.13), and again noting the 
statistical independence property, we find for the first term on the right of (2.12) 
the expression 

(2.15) L ( k ;  t, t”) ( a P )  q - PI) (ad G( - 9)) dt”. 
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This result involves only the second-order moments of the unperturbed ampli- 
tudes. Corresponding expressions may be obtained for the other two terms in 

If the appropriate Reynolds number were Q 1, we should expect fll to be a 
good approximation to S for all t. As this Reynolds number approached unity, 
however, we should expect that more terms in the expansions for the u(k) would 
have to be retained for substantial values of t - to. Finally, for the Reynolds 
number ;L 1, it is not hard to see that the convergence of the expansions should 
be very poor if t - to is larger than some characteristic time of the turbulence. 
Thus the perturbation technique just described would appear to be quite useless 
for cases of typical interest in turbulence theory. 

The failure of conventional perturbation techniques at moderate and high 
Reynolds numbers of course simply reflects the fact that the non-linear 
terms in (2.2) are then not a small perturbation. However, we have seen that 
even when the non-linear terms are large they consist, in the limit L -+ co, of 
an infinite sum of infinitesimal contributions from individual pairs of modes. 
This property makes it possible to develop new perturbation expansions which 
seem to be useful at all Reynolds numbers. 

Let us again consider the moment S for the flow defined above. According to 
the maximal randomness condition, X must represent a phase correlation of the 
modes k, p, q induced by the dynamical interaction; according to the weak 
dependence principle this phase correlation is infinitesimal. We may ask how the 
dynamical interaction produces the weak phase correlation. The most obvious 
way is through the direct interaction of u(k), u(p), u(q), involving the terms in the 
equations of motion of these three amplitudes bilinear in u( k k), u( & p), u( & 9). 
Denoting these terms by b(k), b(p), b(q), we have from (2.2) 

(2.12). 

(2.16) 

b,(k) = - iP,,(k) Uj (  - P) Urn( - 91, 

bi(P) = - iGj,JP) Uj( - 9) zc,( - k), 

= - Cjrn(q)Uj(-k) u ~ ( - P ) *  

Let us denote by Su(k), 6u(p), du(q) the perturbations in the three amplitudes 
induced by the direct interaction. At this point very much hinges upon the 
meaning given the word ‘induced’. If we were to follow the spirit of the con- 
ventional perturbation approach, we would take 6u(k) to be the increment which 
must be added to E(k) to yield the u(k) generated by retaining, of the non-linear 
parts of the equations of motion, only the terms b(k), b(q), b(p). Instead, we 
define 6u(k), 6u(p), du(q) as the differences between the exact amplitudes u(k), 
u(p), u(q) and the values they would have if the terms b(k), b(p), b(q) were 
removed from the equations of motion and all other non-linear terms retained. The 
dynamical significance of our new procedure is that instead of treating in isolation 
the effect of the direct interaction of modes k, p, q we take full account of the 
modification of this effect due to the coupling of each of the three modes to 
all the rest of the system. The latter coupling is very strong at high Reynolds 
numbers, and we therefore expect a marked improvement over the conventional 
procedure. 
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In the limit L + m, 6u(k), 6u(p), 6u(q) represent infinitesimal perturbations 
according to our previous considerations. It follows that the contribution S, 
which the direct interaction makes to S in the limit is 

Nowwehave . cmg(k; t ,  t”) bi(k, t”) dt”, (2.18) 

since, by (2.4), [,bg(k; t, t“ )  is defined as the response tensor, €or arbitrary infini- 
tesimal perturbation, associated with the exact equation of motion (2.2). Thus, 
noting (2.16), the first term on the right of (2.17) may be written 

-ic.jm(k) t,t”)ui(P)u[i‘( -P)u:(q)uk( -9))dt”.  (2.19) s:, 
According to the weak dependence principle, the average in (2.19) is equal, in the 
limit, to  the product of independent averages over the factors associated with 
f k ,  kp,  kq .  Henceweobtain 

1 

to 
- i4jm(k) J- (C&; t, t”)) (UXP) a;( - PI) (4(q)  42 - q))dt”, (2.20) 

with corresponding results for the other two terms in (2.17). Thus we obtain an 
expression for S, which involves the exact second-order moments and average 
impulse-response tensors. 

The direct-interaction contribution S,  is the first term in a new, well-defined 
perturbation expansion for the moment X in the limit L -+ co. Each higher term 
corresponds to the interaction of modes k, p, q through some finite set of the 
modes other than k, p, q. In  each case the relevant set of bilinear interaction 
terms represents an infinitesimal perturbation on the exact equations of motion, 
and each resulting higher-order contribution to  S is an integral expression in- 
volving only second-order moments and average response tensors. t We shall not 
be explicitly concerned with the higher-order terms in the present paper, and 
consequently we shall reserve the derivation of the full expansion for elsewhere 
(see Kraichnan 19583 for a preliminary and partial description). 

The perturbation method just described can be extended to give well-defined 
expansions for all higher moments of the u(k) in terms of only second-order 
moments and the average response tensors. In  the present paper, however, we 
shall be concerned only with the third-order moments. 

The structure of (2.20) closely resembles that of (2.15), the expression for the 
first-order contribution according to the conventional perturbation theory. The 
difference is that (2.15) contains the unperturbed covariances and response 
tensors while (2.20) contains the exact covariances and response tensors. These 
latter quantities can be expanded, by the conventional procedure, in the form of 

t It was erroneously concluded in Paper I ($5.2) that the higher-order contributions 
could vanish by symmetry. This is not the cme, and equation (3.12) of Paper I, which led 
to the conclusion, is wrong. 
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infinite series in the unperturbed quantities. If this is done, and the results 
substituted into (2.20), it is easy to see that (2.20) contains contributions of all 
orders in the conventional expansion for S. It represents, in fact, a partial sum- 
mation of that expansion. Consequently, we may hope that s, will represent a 
valid approximation to S at Reynolds numbers where the convergence of the  
conventional expansion is hopelessly poor. Each higher term in our new expan- 
sion also represents an infinite summation over terms of the old. The new 
expansion may be regarded formally as a regrouping and consolidation of the 
terms in the conventional expansion. 

2.4. The direct-interaction approximation 

From (2.2) we have the equation of motion 

for the covariance tensor. There is also a second equation of motion involving 
differentiation with respect to t'. If we substitute for the triple moments on the 
right the new perturbation expansions just described, we obtain an integro- 
differential equation which involves only the covariance tensors and the average 
response tensors. Further application of our ne'w perturbation method yields an 
equation of motion for (Cij(k)) which also involves an expansion in only these 
two kinds of quantities. Thus the method yields formally complete equations for 
the covariance tensors and average response tensors. We shall now outline the 
derivation of the direct-interaction contribution to the equation of motion for 
(&(k)). The method to be followed differs somewhat from that employed in 
Paper I and has the advantage of being less formal. 

Let us consider the effect of the impulsive disturbance represented by the 
addition of the terms &(k, t )  = a8(t -t'), &(k, t )  = LJk, t )  = 0 on the right side of 
(2.2) for a single mode k only. Here a is an infinitesimal parameter. For t > t', the 
averaged perturbation in (2.2) has the form 

(2.22) 

where 6u(k), 6u(q) are the changes in u(k), u(q) induced as a result of the initial 
disturbance and we retain only the terms linear in a noting the symmetry of 
Pij,(k) i n j  and m. Since the disturbance was applied originally to u(k) only, we 
anticipate from the property of weak coupling that each 6u(q) is infinitesimal 
compared to Su(k) when L -+ 00. Now we wish to evaluate the contribution to any 
given term on the right of (2.22) due to direct interaction of the modes k, p, q. 
This interaction produces a perturbation 

- iP,,(q) [a,( - P) 6u,(k) + %(k) a%( - PI1 (2.23) 

on the right side of the equation of motion for u,(q). By the weak coupling 
property, 6u( - p) is ir~linitesimal compared to 6u(k), and we neglect it. Then, by 
(2.41, 

(2.24) 6um(q) = - iP,,(q) Cm,(q; t ,  t")  u:( - P) W ( k )  at", 
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whence 

t 

t' 
= - i e d q )  J [(Cmn(q; t ,  t " ) )  (Uj(P) u,"( - P))  ((9u,"(k))l dt" (2.25) 

by the weak dependence principle. By the definition of the response function we 
have 6ui(k) = &(k; t ,  t') for the impulsive disturbance chosen. Thus we have 
obtained the direct-interaction contribution to the equation of motion for 
(ci1(k; t ,  t ' ) ) ,  and it involves only covariance tensors and average response 
functions. 

The procedure we have just followed has a rather simple dynamical interpreta- 
tion. The response tensor describes the relaxation of an initial impulsive disturb- 
ance through two effects: viscous decay and the energy exchange among modes. 
Viscous decay alone would yield the response tensor ~3~~ exp [ - vP(t - t ' ) ]  which 
appeared in the conventional perturbation theory. The transfer of initial excita- 
tion energy from mode k to mode q by direct interaction involves two conceptual 
steps. First, a perturbation is induced in mode q. This is determined by the 
response tensor of mode q and involves the amplitude of a third mode p as a 
modulating factor because of the non-linearity of the equations of motion. 
Secondly, the perturbation induced in mode q reacts upon mode k subtracting 
energy out of the original excitation. The reaction again involves the amplitude 
of mode p as a modulating factor. 

The full integro-differential equations for the covariance tensors and average 
response tensors cannot be used without either summing or approximating the 
infinite series of perturbation contributions they contain. In  the present paper, 
as in Paper I, we shall make the approximation of retaining in these equations 
only the direct-interaction contributions. The arguments which justify this 
approximation and suggest the limits of its validity can be developed properly 
only when the complete perturbation theoryis presented, which is not the object of 
the present paper. We shall merely state here, without proof or amplification, some 
of the pertinent results. First, it can be established that the direct-interaction 
approximation gives self-consistent equations for the covariances and average 
response tensors. By this we mean that the equations yield solutions which obey 
the initial or other boundary conditions, fall properly to zero for infinite dif- 
ference times, display rigorously positive frequency spectra and are otherwise 
well behaved. Furthermore, the energy conservation properties of the non-linear 
interaction are exactly preserved so that a self-consistent energy dynamics re- 
sults. These results are strong evidence for the naturalness of the approximation. 

The direct-interaction approximation appears to be a useful one at all 
Reynoldsnumbers. This is suggested by the fact that no condition on the Reynolds 
number is invoked in the perturbation procedure and also by the fact that the 
direct-interaction contributions represent contributions of all orders in the 
Reynolds number. We shall see in the present paper that the approximation 
gives plausible and self-consistent results for very high Reynolds numbers, and 
in a later paper we shall present semiquantitative estimates of the actual errors 
involved. 



510 R. H .  Kraichnan 

One might expect that better approximations to the integro-differential equa- 
tions would be obtained by retaining terms of successively higher perturbation 
orders in the expansions for the third-order moments. This, unfortunately, is not 
thecase because the resulting equations donot have the self-consistency properties 
described above, and, in fact, do not seem to have solutions obeying reasonable 
boundary conditions. In order to obtain self-consistent higher approximations it 
is necessary to close off the heirarchy of moment equations at higher levels. Each 
such approximation depends on new perturbation expansions the lowest terms 
of which represent terms of all orders in the expansions for the immediately 
preceding approximation. In  each case only these lowest terms are retained. The 
approximation next above the direct-interaction approximation involves ex- 
panding fourth-order moments in terms of third-order moments, second-order 
moments, and certain higher response functions and thereby obtaining a com- 
plete set of equations which determine the third-order and second-order moments. 
The complexity of the self-consistent approximations increases rapidly with order. 

In  concluding discussion of the foundations of the theory, we shall mention 
some possible generalizations and additional applications. The theory seems 
capable of generalization to problems like turbulent flow in an infinite uniform 
channel or pipe in which there is homogeneity in only one or two directions. There 
is no restriction to stationarity in time, and presumably the theory could then be 
used to investigate not only fully developed turbulence but also the development 
of turbulence from the laminar state under perturbations statistically homo- 
geneous in the axial direction of the channel or pipe. 

With further modification the theory seems applicable to classes of problems 
which display no homogeneity at all but do exhibit statistical stationarity in time. 
In  this case, the weak dependence principle would apply to the frequency com- 
ponents of the dynamic variables. A simple example would be a damped non- 
linear oscillator excited by Gaussian noise. 

3. Statistical equations for stationary isotropic turbulence 
The theory described in the preceding section takes its simplest form when the 

turbulence is isotropic in space and stationary in time. For this case each tensor 
involved can be expressed in terms of a single scalar, and all statistical moments 
depend only on difference times rather than absolute times. The remainder of 
the present paper will be concerned almost exclusively with the stationary iso- 
tropic case. However, we should note at the outset that this implies a considerable 
idealization of physical flows. For turbulence to be stationary there must be 
driving forces to replace energy lost by viscosity; in order to maintain isotropy 
the driving forces must themselves be isotropic, and this is physically unrealistic. 
(We may visualize such forces, perhaps, as due to a random volume distribution 
of stirring devices.) The physical justification for studying the stationary iso- 
tropic case (apart from its intrinsic dynamical interest) is that the structure at 
high wave-numbers, with which we shall be principally concerned, plausibly may 
be expected to differ inappreciably for stationary and freely decaying turbulence 
a t  high Reynolds numbers. We shall return to this matter after exploring the 
stationary theory. 
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In  order to  describe the stationary isotropic case explicitly, we replace (2 .2)  
with the new equation of motion 

where f i (k ,  t )  is a statistically stationary and isotropic solenoidal forcing term. 
In  accord with the condition of maximal randomness, we take the f ( k )  statistically 
independent for distinct k’s.  

The conditions of stationarity and isotropy require that the covariances con- 
structed from u(k) and f ( k )  have the forms 

( L / ~ T ) ~  (u i (kr  t + 7 )  u3 * ( k, t ) )  = +p,j(k) U ( k ,  T I 7 /  

(L/27d3 ( f i ( k ,  t + .,fj * ( k t ) )  = t P i , c k ) F ( k J ) , [  

s 

(3.2) 

(L/2n-)3Re(fi(k,t+7)u~(k,t)) = + q j ( k ) G ( k , 7 ) ,  

where the scalars U, F, G are all real and U, F are even functions of 7.t The 
normalization in (3.2) is such that in the limit L + co (which is required for 
rigorous isotropy), 

U(k ,  7) = (24-3 O(z, 7) e-ik.xd3x. (3.3) 

where O(z, 7) = (Ci(x + y, t + 7) Ci(y,  t ) ) ,  with corresponding expressions for 
F(k,  7 )  and G(k,  7). 

From (3.1) we may readily obtain the equation of motion 

U ( k ,  7) + vk2U(k, 7) = X(k, 7) + G(k, T), (3.4) 

where the dot signifies differentiation with respect to 7 and 

fw, 7 )  = (L/27d3 Im [k, z (Ui(P, t )  Urn(% t )  u:(k, t - 7))l. (3.5) 
P+P=k 

The perturbation method described in $ 2  may be used to expand the triple 
moment on the right side of (3.5). First, we note that the isotropy and stationarity 
of the turbulence imply isotropy and stationarity of the average of the infinitesi- 
mal-impulse-response tensor defined by (2.4). Thus we have 

(C&; t ,  t ’ ) )  = G#) g(k, t - t‘) .  ( 3 4  

The scalar g(k, 7) will be called simply the impulse-response or response function; 
it can be shown to be real. The factor Pij(k) in (3.6) expresses the infinite im- 
pedance of the system to non-solenoidal (compressive) forces. The direct-inter- 
action contribution to X(k ,  7) in the limit L + 00 is (see Paper I, $9.1) 

t In Paper I, the presentf,(k, t )  was denoted by FJk, t )  in order to avoid confusion with 
other notation. F(k, 7 )  has the same meaning in Paper I aa it does here. 
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where the domain of integration extends over all wave-numbers p ,  q such that 
p ,  q ,  k can form the legs of a triangle. The geometrical factors a ( k , p , q )  and 
b( k,  p ,  q )  are given by 

(3.8) 1 a(k,  P ,  a)  = Q(1- q Y Z  - 2y2z2), 

b(k, P ,  4 )  = ( P P )  (ZY + z3),  

where x, y, z are the cosines of the interior angles opposite the legs k ,  p ,  q, re- 
spectively.? They obey the trigonometric identities 

(3.9) J a@, P ,  4)  = a@, q,  P )  2 0, 

k2b(k, P ,  a)  = P W P ,  k ,  a ) ,  
W , p ,  a)  + b(k, 4, P) = 2a(k, P ,  q ) ,  

which, as we shall see shortly, are connected with the energy conservation pro- 
perties of the non-linear interaction. 

Application of our perturbation technique to the evaluation of G(k,  7) yields 
the result$ 

G(k,7)  = g ( k , s ) F ( k , s + T ) d s .  (3.10) 

Finally, as shown in Paper I ,  the direct-interaction approximation gives the 
equation of motion 

1 

ss, g(k 7 )  + vk2g(k, 7 )  = -d pqdpdqb(k,p,  4 )  

x /oTg(k , . r - s )g(p ,s )  U ( q , s ) d s  (7 2 01, (3.11) 

for the response function. For 7 < 0, g(k ,7)  = 0, since there is no response to  a 
perturbation beforeit is applied. If P ( k , T )  is prescribed, (3.4), (3.7), (3.10), (3.11) 
form a complete system determining U ( k ,  7 )  and g(k, 7)) provided suitable 
boundary conditions are imposed. The condition of stationarity requires 

O(k,O) = 0, (3.12) 

which may be formulated by (3.4) and (3.7) as an integral condition (4.2) ex- 
pressing the balance of energy. The other required boundary condition is 

g(k,  + 0 )  = 1, (3.13) 

which follows immediately from the definition of g(k, 7) and the fact that (3.1) 
involves only first derivatives with respect to time. 

t The expression given here for b(k,  p ,  q )  is related to that in Paper I by a trigonometric 
identity. The author is indebted to Mr Robert Wernick for the present, simplified expression. 
The expressions for both a( k ,  p ,  p) and b(k ,  p ,  p) given in Paper I should be multiplied 

The restriction on the univariate distribution of f(k) made in obtaining this result in 
Paper I is unnecessary. Equation (3.10) can be shown to be an exact result for L + 03 

provided only that the f(k) are statistically independent for distinct k’s. 

bY 3- 



Isotropic turbulence at very high Reynolds numbers 513 

4. The spectral transport of energy 
The covariance scalars introduced in the last section may be written 

(4.1) 
i U ( k , 7 )  = (4nk2)-1E(k)r(k,7), 

P(k, 7) = (4nk2)-1P(k)p(k, 7) ,  

where E(k)  is the kinetic energy spectrum function and P(k)  the forcing spectrum 
function, both per unit mass of fluid, The total kinetic energy per unit mass is 
r m  

J E(k)  dk.  The quantity r(k,  7 )  is the time correlation function of the Fourier 
n - -  

mode, normalized so that r(k,  0) = 1, with a corresponding interpretation for 
,u(k, 7) .  If we rewrite (3.4) in terms of the new quantities, set 7 = 0, and note the 
symmetry of the integration domain with respect to p and q, we obtain the 
relation 

1 
2 v k 2 w 4  = -JjA8(k 2 I p,q)rlpdq+P(k)Srng(k,s)l l(k,s)ds,  0 (4.2) 

where 

fw I P ,  !I) = (WPd {2k2a(k, P ,  a)  w, P, P) E(P) 
- [ p 2 b ( k  P ,  a)  O(P, k a)  E(q)  +a2W, q,  P )  m, k, P )  E(P11 EWI (4.3) 

and 

The left side of (4.2) is the mean power dissipated by viscosity, per unit mass 
and per unit wave-number. The second term on the right may be interpreted as 
the mean power input by the driving forces, per unit mass and per unit wave- 
number. (Hereafter, all powers will be understood to refer to unit mass.) It 
should be noted that the linear dependence of this term on F(k)  is only apparent; 
the response function g(k,  s) is an implicit functional of P and ,u determined by 
(3.4), (3.10) and (3.11). The first term on the right may be interpreted as a mean 
power input due to non-linear interaction of the velocity modes. Thus, 

fw I P, a)  dk dP dq 
represents the mean power delivered to the Fourier modes in the interval dk 
as a consequence of their triad interactions with all pairs of modes of which 
one member lies in each of the intervals dp and dq. X(k I p ,  q )  is symmetric in 
p and q, and the factor 4 in (4.2) occurs because each pair of modes is counted 
twice in the integration. 

It may be deduced readily from (3.1) that the interaction of any triad of 
Fourier modes is individually conservative; this implies 

fw I P ,  P) + 4 P  I q, 4 +&!I I k P )  = 0, (4.5) 

which may also be obtained easily from (4.3) by using the trigonometric identities 
(3.9) and the fact that O(k,p, q )  is symmetric i n p  and q. The overall conservation 
property 

follows directly from the detailed conservation relation. 
33 Fluid Mech. 6 
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It should be noted that while the concept of the elementary interaction of a 
triad of Fourier modes has a particular significance because of the detailed con- 
servation property, the same is not true of the concept of exchange of energy 
between pairs of modes, which has been used frequently in turbulence theory. 
There is no way to tell how much of the energy a mode k receives from interaction 
with modes p and q comes from p rather than from q (Paper I ,  footnote 7). 

The quantities which enter expression (4.3) may be given fairly direct physical 
interpretations. We shall consider first the factors 8(k ,p ,  q), 6 (p ,  k, q ) ,  8(q, k , p )  
which, from their dimensions, evidently represent characteristic times for the 
triad interaction. We may anticipate that these factors are essentially positive. 
The physical significance of the response function g(k,s) is that it traces the 
relaxation of an initial applied excitation of mode k through the joint action of 
viscous decay and the energy exchange, or mixing action, with the infinitely 
large number of only weakly statistically inter-related other modes. We may 
expect that it falls to zero with increasing s in a fairly smooth fashion and that it 
does not exhibit strongly negative regions. The correlation function r(k,  s) also 
is determined by the general mixing action. We may expect that it, too, is 
essentially positive and falls fairly smoothly to zero with increase of s. Thus 
B(k,p, q) ,  B(p, k, q )  and 8(q, k , p )  may be expected to be the order of characteristic 
correlation and relaxation times of the three modes involved. 

The proportionality of the terms in S(k I p ,  q)  to the 8 factors may be inter- 
preted as follows. A non-zero mean transfer of efiergy among the three modes 
requires that certain phase relations among these modes be established in a 
statistical sense. These relations are built up by the direct interaction of the three 
modes, according to the direct-interaction approximation, but are simultaneously 
broken down by the viscous decay and effectively random mixing with all the 
other modes, as expressed by the g and r functions. Loosely speaking, we may say 
that O(k,p, q )  is an effective time during which the triple phase correlation can 
build up before it is broken down. 

The fist of identities (3.9) indicates that a(k ,p ,q )  is never negative, and the 
third that b(k ,p ,q)  is typically positive. If, as anticipated, the 0 factors are 
positive, the term in (4.3) involving a represents a positive flow of energy to mode 
k while those involving b represent a typically negative flow. The net flow is the 
resultant of these absorption and emission terms. It will be noticed that in con- 
trast to the absorption term the emission terms are proportional to  E(k) .  This 
indicates that the energy exchange acts to maintain equilibrium. If the spectrum 
level were suddenly raised to much higher than the equilibrium value in a narrow 
neighbourhood of k, the emission terms would be greatly increased while the 
absorption term would be little affected; thus, energy would be drained from the 
neighbourhood and equilibrium re-established. The structure of the emission 
and absorption terms is such that in general we may expect the energy flow to 
be from strongly to weakly excited modes, in accord with general statistical 
mechanical principles. 

Although, as waa noted above, it is impossible to define unambiguously the 
transfer of energy between a pair of modes, it is meaningful to define a transport 
power n ( k )  as the mean power input to all modes of wave-number higher than 
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some value k from all modes of wave-number less than k. For this purpose we 
divide all the triad interactions into four cIasses as shown in figure 1. Classes 
A and B do not transfer energy across the boundary. rI(k) is therefore the power 
input to all modes k‘ > k by all interactions in class C less the power input to all 
modes k’ c k by all interactions in class D. Thus 

(4.7) 

The upper limit on the first integral sign is taken as 21% instead of 03 because for 
k’ > 2k there are no p and q such that p ,  q < k and k’, p ,  q form a triangle. 

It follows from the conservation properties that the interaction power-input 
density appearing in (4.2) is related to n(k) by 

FIUURE 1. Classification of triad intermtions for computing the transport power II(k). 

5. Response and time correlation functions for high wave-numbers 
5.1. The response function 

The equations of motion (3.4) and (3.11), with S(k,  7) and #(k, T) given by (3.7) 
and (3.10), are of a type which does not seem to have been studied, and it may be 
anticipated that in general their solution will present severe difficulties. Our 
procedure here will necessarily be mathematically non-rigorous. We shall surmise 
properties of the solution and then examine the consistency of our assumptions 
with the equations. Our primary purpose in this initial investigation is to see 
whether the equations seem to yield physically sensible results. 

The simplest starting point is the equation of motion for g(k, 7 ) .  Using (4.1) we 
may rewrite (3.1 I)  in the form 

i(k 7 )  + yk2g(k, 7 )  

= --l’lkdPdq~a(k,p,q)~(q)~g(k,7-s)g(p.s k (7 2 0). (5.1) 
2 0 

33-2 
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Now let us consider a k sufficiently high that all but a very small fraction of the 
total energy lies very far below k. Because of the factor E(q) ,  it  appears plausible 
to assume that the right side of (5.1) should be dominated by contributions from 
the principal energy containing region q 4 k.  This assumption is supported by 
direct inspection of the original equation of motion (3.1). It will be noticed that 
the coefficient ik ,P,(k)  of the bilinear terms is independent of I p I and I q I .  
Apart from certain angular dependence effects, the coupling of the mode k to 
modes p or q < k appears quite as strong intrinsically as its coupling to modes - k.  Thus we might expect that the contribution of the bilinear terms to the 
motion should be dominated by terms involving the modes which contain most 
of the total excitation. Also, it is clear from the appearance of the factor k, that, 
in general, the rate of change of ui(k, t )  ascribable to the non-linear terms tends to 
increase with k.  Thus we may anticipate that the characteristic times of the 
functions g(k, s) and r(k,  s) decrease with increasing Ic. 

Our assumptions are related to the observations in the x-space representation 
that the time variation of the fine structure, viewed in a fixed co-ordinate system, 
should be dominated by the sweeping action of the energetic large-scale motion 
and that small structures should be swept past fixed points more rapidly than 
large ones. 

Returning to (5.1), we note that for q 4 k the triangle relation gives p x k ;  
then we may approximate g(p ,  5 )  by g(k, a) ,  provided it is a reasonably smooth 
function. Since the time characterizing r(q, s) should be very large compared to 
that of g(k, s), we shall assume that in the region where g(k, s) is significantly dif- 
ferent from zero we may replace r(q,s)  by r(q, 0) = 1. Finally, we can find from 
the definition (3.8) that, for k x p ,  

b(k ,p ,q)  = sin2& 

where p is the interior angle between k and q. The wave-number integration for 
q in the energy range now can be readily carried out, yielding 

where ke < k is a wave-number below which lies very nearly all the energy. Then, 
noting 

JOk%!l)da x J r n m d a  0 

IO7 

= +v;* 

where vo is the r.m.s. velocity in any direction, we obtain the equation of motion 

g(k, 7 )  + Vk2g(k, 7 )  = - V ;  k2 g(k, 7 -8) g(k, S) ds (7 >, 0). (5 .2)  

If our assumptions and approximations are well-founded, this equation should 
be asymptotically exact, in the direct-interaction approximation, for sufficiently 
high k. 

The solution of the Laplace transform of (5.2) for the boundary condition 
(3.13) is a standard form, and we thereby find 

g(k, 7 )  = exp ( - vk?) J1(2v0k7)/(v0 k7) (7 >, 0) .  (5.3) 
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A detailed investigation of the behaviour of the right side of (5. I) ,  with g given by 
(5 .3)  and r estimated from the results to be derived in $5.2, indicates the con- 
sistency of our assumptions and approximations. It is found that the restriction 
of the integration region to Q < k can give rise t o  appreciable fractional error in 
g(k, 7 )  only when 7 % (vk2)-l. For such 7 ,  error can arise because the integral over 
s may be much larger for, say, p ,  q - ik than for p z k .  However, g(k, 7 )  is very 
small for such 7,  and the possible error is unimportant. Moreover, it  decreases 
with increasing separation of k and the energy containing region. Our further 
approximations appear to be justified also. 

The factor exp ( - vk27) in (5 .3)  is the response function appropriate to the 
decay of an applied excitation by viscosity without interaction with the other 
modes. The factor J,(2v, k ~ ) / ( v ~ k ~ )  (plotted in figure 2 )  represents the relaxation 

FIGURE 2. Solid curve : the asymptotic response and time-correlation function J1(2v, kr)/v,, kr 
given by the direct-interaction approximation. Dashed curve : the function exp ( - 4.: k2P) 
discussed in $8.4. 

associated with the energy exchange between the given mode and others with 
very nearly equal wave-vectors, due to the mixing action of the energy-con- 
taining region. By this process the applied excitation is mixed, or diffused, into 
many neighbouring (but statistically weakly dependent) modes. The charac- 
teristic time (vo k)-1 associated with the mixing contribution to g(k, 7 )  is the 
same order as that which would be expected from the convection of a periodic 
pattern of wave-number k by a uniform velocity of magnitude vo. However, 
the action of the low wave-numbers in the present theory is very different 
from the convective action of a uniform field. Such a field does not produce 
mixing of neighbouring modes and therefore gives rise to ‘coherent ’ time 
dependence rather than relaxation effects. 

The oscillations in g(k,  T )  which appear in figure 2 are probably to be ascribed 
to the direct-interaction approximation rather than the physical phenomenon. 
We shall discuss this in relation to experimental evidence in § 8.4. 
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5.2. The time-correlation function 

In  actual stationary turbulent flows at high Reynolds numbers, the supply of 
energy to  the turbulence seems to be concentrated principally in the energy- 
containing range. This suggests that in our present investigation we take f(k) to 
be negligible outside this range. Then for k well above the energy-containing 
range we,may omit the term G(k,  T )  in (3.4). In  this case (3.4), (3.7) and (4.1) lead 
to the equation of motion 

(In obtaining this form a slight change of time variable has been made, and it hm 
been noted that r is an even function of time.) 

FIGURE 3. Solid curve : the (non-dimensionalized) rtsymptotic frequency spectrum function 
( 2 / 4  [l -o~/2w, ,k)~]*  given by the direct-interaction approximation. Dashed curve: the 
function (2/7r)* exp ( -  ?@/v:k2) discussed in $8.4. 

Now let us assume that the Reynolds number is high enough for there to be a 
range of k large compared to energy-containing wave-numbers but small com- 
pared to vo/v, so that vk2 -g vok.  For such k we may anticipate that the behaviour 
of r (k ,7)  should be dominated by the energy range mixing action discussed 
previously, and consequently be characterized by a time the order of (w0k)-l. 
If this be so, the term vk2r(k, 7 )  on the left of (5.4) should be negligible compared 
to P(k, T ) ,  except in the immediate vicinity of the origin. Now, following argu- 
ments similar to those used in obtaining (5.2), let us retain on the right of (5.4) 
only those contributions, involving b(k ,p ,  q),  such that E(q) refers to the energy- 
containing range and only those, involving a(k, p ,  q) ,  such that E ( p )  or E(q) refers 
to this range. Making the further approximations used in obtaining (5.2), taking 
either E(q)/E(k) or E(p) /E(k )  w 1, as appropriate, using the fact that 

W k , p ,  q )  w sin2B (a < k) 
and writing s," ds = loT ds' + ITm ds, where s' = 7 - s, 
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we obtain the asymptotic equation 

g ( k , ~ - s ' ) r ( k , s ' ) d s '  

+ ~ ~ ~ [ ~ ( k 7 ~ - s ) g ( k , s ) - g ( k , s - ~ ) r ( k , s ) ~ d S  

The solutionsatisfying (3 .12)isr(k,  7 )  = g(k, I T I ) ,  sinceforthischoicethesecond 
integral on the right of (5.5) vanishes and the equation reduces to the asymptotic 
form taken by (5 .2)  for the case vk2 < v,k. Thus we have the result 

r(k,  7 )  = J1(2V0k7)/(V0k7). (5.6) 

A consistency check similar to that described after (5 .3)  suggests that this solution 
is indeed asymptotically valid if k satisfies t h  double inequality we have postu- 
lated. The frequency spectrum corresponding to our solution is 

This function is shown, non-dimensionalized, in figure 3. 
The spectrum of a correlation function must be positive everywhere, and the 

fact that (5.7) exhibits this property is some evidence of the consistency of our 
theory. The existence of all derivatives of r(k,  w )  at the originindicates that all the 

moments r (k ,  7)7"d7 exist. The sharp cut-off in the spectrum at o = 2v,k is 

associated with the oscillations in r(k, 7). Almost certainly, it is a consequence of 
the direct-interaction approximation rather than a physical fact. We shall discuss 
this further in Q 8.4. 

loW 

6. The inertial range 
Let us assume the existence of an extended range of k which satisfies all the 

inequalities invoked in 9 5 and over which the integral of the left side of (4 .2)  is 
negligible compared to the total dissipation at higher wave-numbers. We shall 
call this the inertial range. If, as before, we take the driving forces to be negligible, 
the energy-balance equation (4 .2)  reduces in this range to 

It follows according to the analysis of Q 5 that the contributions to this equation 
for which p or q is in the energy-containing range are given asymptotically by 
2E(k)  times the right side of (5.5) for 7 = 0. The s integrals in this expression 
vanish identically (independently of the form of r (k,  s) and g(k, g)), which suggests 
that modes of high wave-number do not receive energy from direct interaction 
with the energy-containing range. This is in accord with the widely accepted 
intuitive notion that the transfer or energy up the spectrum proceeds by an 
essentially local cascade process. We shall assume that this is so, determine the 
spectrum in the inertial range, and then check the consistency of our assumption 
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by obtaining an expression for the energy transport due to interaction among 
distant wave-numbers. 

The existence of an effectively local cascade process, together with the con- 
servative character of the interaction, implies that in the inertial range, where 
dissipation is negligible, the transport power must satisfy 

rI(k)  = E ,  (6.2) 

where the parameter E is the mean power eventually dissipated at  very high 
wave-numbers. I n  accord with the concept of a local cascade process we shall 
assume that contributions to I l ( k ) ,  as given by (4.7) and (4.3), may be neglected 
if p ,  q,  or k' is very large or small compared to k.  For all the remaining contribu- 
tions, the relevant response functions and correlation functions are of the form 
J1(2?Jok7)/(Vok7). The 8 factors defined by (4.4) then are symmetric in their argu- 
ments and have the dimensional form 

EW, P ,  q)l = r590r1  PI-'. 
Consequently, II(k) has the dimensional form 

u w i  = ~ - 1 [ k 1 3  ~ ~ 1 2 .  

It seems rather clear from this that if n ( k )  is to  be determined wholly by contri- 
butions with Ic', p and q all in some essentially local neighbourhood of k and is to 
have the value 8, which is independent of k,  then one must have 

E ( k )  = f ( O )  ( E V ~ ) * ~ - % ,  (6.3) 

wheref(0) is anumerical constant. (We choose this symbol for later convenience.) 
The argument just given only suggests the necessary form of E ( k ) ,  and we must 

check to see that (6.3) actually satisfies (6.1) and leads to a local cascade process. 
If (6.3) is substituted in (4.3) and one takes g(Ic,s) = g(voks),  r ( k , s )  = r(woks) 
(without specifying the particular functional forms of r and g) ,  it is not difficult 
to verify by formal manipulations, using the identities (3.9), that (6.1) is satisfied. 
This actually is rather clearly implied by the conservative nature of the theory 
and the dimensional considerations above. The formal property has meaning, 
however, only if the integrals involved converge properly, which corresponds 
physically to the presumed localness of cascade. We may verify the latter property 
by considering the total power input to all modes of wave-number k" > k' from 
direct interactions with all mode pairs p ,  q such that p or q < k < k' , where k and 
k' are fixed wave-numbers and all wave-numbers concerned are within the 
inertial range. Using r ( k , s )  = g(k, 1.1) = J1(2v0ks)/(v0ks) and computing this 

0, or p<k) power &B 

n(k' I k) = f dk" 11 S(k"]p ,  q )  dpdq, 
k' A. 

(6.4) 

we find, after considerable algebra, the asymptotic result 

II(k'1k) = (numerical factor) [f(0)12e(k/k')Q ( k  < k').  (6.5) 

The triad interactions involved in the integration are shown in figure 4. IT(k'1k) 
goes to  zero with k/k', so that the energy transport is asymptotically local, as 
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originally assumed. However, the dependence on klk’ is not particularly strong, 
and thus the cascade is rather diffuse. 

It remains to determine the constant f (0). This may be done by substituting 
(6.3) into (4.7), taking the form J.(2v,ks)/(v0ks) for the response and correlation 
functions, evaluating the definite multiple integrals, and noting (6.2). After this 
is done, (5.6) and (6.3) provide a complete asymptotic solution for the inertial 
range. 

FIUURE 4. Triad interactions contributing to the distant-transport power n(k’ I k). 

If the inertial range extends through and well above the wave-number k, the 
total energy above k according to (6.3) is 

s,” E ( p )  dp E 2 f (0) (ev,)* k-*. (6.6) 

Now let us consider the extrapolation of this expression down to low k. Assuming 
thatf(0) is the order of unity, it  is clear that (6.6) gives an energy the order of vg 
(per unit mass) when k is the order of 

k, = (6.7) 

Such an extrapolation violates our conditions for the inertial range, of course, but 
nevertheless the result suggests strongly that k ,  is actually the order of a wave- 
number characteristic of the energy-containing range. It is also known em- 
pirically that this is the case (Batchelor 1953, p. 103). We therefore define a 
Reynolds number nominally characteristic of the energy-containing range by 

R, = v O k ~ l / v  = v$/av. (6.8) 

If the inertial range extends through and well below a wave-number k ,  the 
total power dissipated below k is 

Jok 2vpW(p)  dp  M t f ( 0 )  V ( € V , ) ~ k ~ .  

This expression becomes the order of E for k the order of 

k ,  = eV,-b-* = R,%ko. 

(6.9) 

(6.10) 
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It is clear, then, that necessary conditions for the validity of our asymptotic 
inertial range spectrum are 

k, < k < Riko (6.11) 

for an extended range of k.  This requires in turn that R, satisfy 

Ri> 1. (6.12) 

Since vo/v = Roko, it is clear that the condition vk2 < vOk, invoked in the deriva- 
tion of (5 .6) ,  is contained in (6.11).  

A Reynolds number Rh may be defined by RA = vo k;l/v,  where k i  = €1 15vi v 
(Batchelor 1953, p. 51) .  Thus, 

1 Bh = ( l s R O ) i 7  

k A  = R,ko/15. 

The condition (6.12) is equivalent to 

R t B  1 .  

(6.13) 

(6.14) 

7. The dissipation range at huge Reynolds numbers 
7.1.  The energy-balance integral equation 

The discussion at the end of $ 6  indicated that a major part of the dissipation 
takes place at wave-numbers the order of k ,  = Rik,.  This suggests that for 
Ri 9 1, where the inequality is strong enough, all but a negligible fraction of the 
total dissipation occurs at wave-numbers k < Ro k,  = v,/v.  We shall assume that 
this is so and verify later that the resulting equations do yield a dissipation which 
falls off rapidly for k 9 k,. Then for k in the dissipation as well as the inertial 
range, r ( k , s )  w g(k, Is/) is given by (5.6). Let us anticipate, on the basis of the 
local cascade process already found for the inertial range, that energy transport 
in both inertial and dissipation ranges is negligibly dependent on direct contribu- 
tions from triad interactions with modes outside both these ranges. Then the 
energy balance equation (4 .2)  takes the asymptotic form 

where 

As before, we have taken P(k)  to be negligible for k > k,. It is clear physically 
that the solution of (7 .1)  cannot be unique, since we have not specified the power 
input or dissipation rate. (In effect, we have pushed the source of energy supply 
off to zero wave-number.) To specify a presumably unique solution we may 
require low 2vk2E(k)dk = 6. 

E(k) = (cvo)*k-*f (k/k,j) ,  If we write 

which may be expressed in the dimensionless form 

(7 .3)  

(7.4a) 
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we readily find that (7.1) reduces to  the universal equation 

where 

Equation (7.3) takes the form 

s,” u* f (u) du = &. (7.7) 

Instead of imposing (7 .7) ,  we could require that f (0) have the value determined in 
$ 6  from (6 .2) .  The two conditions are equivalent because the non-linear inter- 
action is conservative; the energy transported through the inertial range is equal 
to the to td  viscous dissipation. 

The singularities in the integrand of (7 .5)  at v = 0 and w = 0 cancel, as may be 
verified, with some labour, from (3.8) and (3.9). This, again, expresses the local- 
ness of the cascade process, according to which the total contribution to the 
integrand from the infinitesimal neighbourhood of these points is infinitesimal. 
We anticipate that f (u) is a well-behaved function in the entire range 0 < u < co. 

It was pointed out in Q 4 that the emission term in the energy balance equation 
is proportional to E ( k ) ,  so that if the spectrum level in the immediate neigh- 
bourhood of k were suddenly raised above its equilibrium value the result would 
be a decrease of the net non-linear input to the neighbourhood and a return to 
equilibrium. This behaviour suggests that it should be possible to solve (7.5) by 
a corresponding correction or iteration procedure, in which one obtains an im- 
proved trial function as an appropriate linear combination of an initial trial 
function 2u*f (u) and the function generated as the right side of (7 .5)  upon sub- 
stituting the initial function. It may be expected, however, that considerable 
practical difficulty will arise because of the singularities in the integrand. 

It is of interest at this point to discuss further the relative roles played in (5.4) 
by local and by energy-containing modes. We have noted that for k < Roko the 
behaviour of r(k,  7 )  and g(k, 7 )  as functions of 7 is determined by interactions 
involving the energy-containing region. However, although contributions in- 
volving the energy-containing region dominate the right side of (5.4) away from 
the origin, they cancel out in the immediate neighbourhood of 7 = 0, as indicated 
by (5.5). In  this neighbourhood, i ( k ,  7 )  goes to zero and the term vk2r(k, 7 ) ,  which 
here dominates the left side, is balanced by contributions on the right nearly 
entirely from local triads. At 7 = 0, this corresponds to the localness of energy 
transport. As the inequalities k ,  < k < R,k, become stronger, the range of 7 

about the origin in which wholly local contributions dominate becomes a smaller 
fraction of (v ,  k)- l .  

7.2 Behaviour in the far  dissipation range 

Let us suppose that R, is sufficiently large that there axe values of k ,  very large 
compared to k,, for which (7 .1)  is still valid. There appear to be two general 
possibilities for the energy supply to such wave-numbers. Either they are 
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powered by an essentially local cascade process, or they draw power principally 
from wave-numbers of the order of k,, in the region where the spectrum begins to 
fall below the inertial range form. We might perhaps anticipate that the first 
possibility is the actual fact. In  the inertial range we have seen that the energy 
transport is essentially local. If now we imagine a part of the spectrum to be 
depressed by local viscous drain, it would appear that the net input from much 
lower wave-numbers should be affected relatively little, since to start with the 
local region was already very far from equipartition with these wave-numbers; 
on the other hand, the local decrease in the level of excitation with respect to that 
of closer wave-numbers should act in the direction of increasing relatively more 
the net input from these latter wave-numbers. These considerations actually 
must be considerably elaborated because of the non-linearity of the system, but 
i t  is not difficult to verify that the transport does remain essentially local in the 
dissipation range and to find the qualitative shape of the spectrum for k B k,. 

First, it  is easy to see that no law of the form E(k) cc kn is possible for k 9 k,. 
Consider, to start, the assumption that the transport is essentially local so that the 
right side of (7.1) is dominated by contributions for which q and p are the order 
of k. Then in the contributing regions B,(k,p, p) is of order (v,, k)- l .  Since a and b 
are dimensionless, one finds, counting up the wave-number factors, that (7.1) 
corresponds to the order-of-magnitude relation 

2vk2E(k) N v01k2[E(k)]2. (7.8) 

As k increases indefinitely this cannot be satisfied by any power law except the 
absurd choice n = 0. On the other hand, if we assume that most of the power is 
supplied by interactions involving modes of wave-number N ka, then in place of 
(7.8) we have 

where leading terms have been retained on the right. The expression k,k appears 
instead of k2 because one of the pair p, q is of order k, and the integration ranges 
of bothp andq are restricted to  intervals of width N k,. Equation (7.9) cannot be 
satisfied by any power law at all. Thus, both (7.8) and (7.9) are inconsistent with 
the initial assumption of a power law, under which they were derived. 

The impossibility of a power law arises from the fact that E appears linearly 
on the left of (7.1) and bilinearly on the right, while the equation is homogeneous 
in the wave-numbers. This suggests that E(k)  contains a factor e-cklkd (where c is 
a numerical factor), since that form gives the product law 

2vk2E(k) N v,lkdkE(kd) E(k) ,  (7.9) 

e-CPlkd e-cqlkd = e - d p i - d l k d .  

Aninvestigation of (7.1) fork 3 k,shows that it is, in fact, satisfied asymptotically 
by a function of the form 

E ( k )  = const (k/lca)2e*k'kd (k B kd). (7.10) 

The dominant contributions to the power input come from wave-number pairsp, q 
forming very flat triangles with k ,  as would be anticipated from the effect of the 
exponential factors in depressing the value of E ( p )  E(q)  for pairs not having this 
property. The integration thus is effectively confined to an area of the p ,  q plane 
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very much smaller than k2, and in this area E(p)E(q)  [E(k)I2.  The factor 
(k/kd)’, which might seem surprising in View of the homogeneity of (7.1) in wave- 
numbers, arises because of the restriction of integration domain; its form also is 
affected by the behaviour of a(k ,p ,  q ) ,  which vanishes for an exactly flat triangle. 
As we partially anticipated on general grounds, the energy transport is local; this 
appears as a consequence of the fact that as k,/k goes to zero so does the fraction 
of p ,  q pairs satisfying p + q w k which also satisfy p or q N kd. 

The form of (7.10) confirms the assumption that the dissipation is effectively 
confined to wave-numbers the order of kd. It suggests also that each decade range 
(to make a somewhat arbitrary division) in the region k % k,  dissipates most of 
the energy supplied to  it, passing on an ever-decreasing fraction to the next 
decade.i Corresponding to this fact, the emission terms in (7.1) are very small 
compared to  the absorption term for k % k,. 

An important characteristic of (7.10) is that it suggests the existence of the 

moments knE(k) dk for arbitrarily high n. In  the x-space representation, this 

implies the existence of mean square velocity derivatives of all orders-a property 
which seems required by physical intuition. To establish this conclusion more 
fully it is necessary to investigate the behaviour of E ( k )  for extremely high wave- 
numbers k % ROE,. Although we have not determined the form of r(k,  7 )  in this 
range, the energy balance equation is, nevertheless, tractable because the func- 
tion B(k, p ,  q )  appearing in the dominant absorption term is determined asympto- 
tically by g(k, s) z exp ( - vk2s). An analysis of the type described above shows 

(7.11) 
that 

This result appears to be valid even for R$ N 1. The proportionality constants, 
however, are not independent of R,. 

Jo* 

E( k)  cc k3 exp [ - (const) k]  (k  % R, k,). 

7.3. Skewness factors for the longitudinal velocity derivatives 

For R$ B 1, the skewness factor 

Sl = ((a.ii,la~l)”/((aa,lax,)z)~ (7.12) 

is given in terms of spectrum moments by the asymptotically valid relation 
(Batchelor 1953, p. 168) 

S, = -~(30)~v[/0*k2B(k)dk]-t/~k4E(k)dk. (7.13) 

By (7.4) and (7.7), we find 

(7.14) 

We can also evaluate S, by expressing i t  in terms of k space triple moments and 
expressing these moments in terms of U(k ,  7 )  and g(k, 7) by the method employed 
in Paper I to  obtain (3.7). This same procedure can be applied, in general, to the 
determination of the skewness factor 8, of the distribution of 2n.iil/i3xF. It is not 
difficult to show that for Ri % 1 the result depends asymptotically only on the 

t We must have en extremely high R, for this to be other than a purely academic point. 
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dissipation range structure and that upon substituting (5.3),  (5.6) and (7.4) in the 
resulting expressions we obtain the asymptotic result 

IS, = A,Rc&, (7.15) 

where the A ,  are universal constants. 
The R, dependence indicated by (7.14) and (7.15) is quite weak, and it is im- 

possible to estimate, without further analysis, how strong the inequality R,f a 1 
has to be for the asymptotic behaviour not to be masked by other effects. 

7.4. Qwalitative discussion of the dynamics 

An interesting paradox arises when we attempt to interpret the dynamics of 
huge Reynolds number turbulence, as given by the present theory, in terms of 
familiar impedance concepts. Equation (6.7) implies that if the driving forces 
were removed the characteristic decay time for the energy-containing range of the 
turbulence, due to the power output to higher wave-numbers, would be of the 
order of (v,k,)--l; that is, the energy range is approximately critically damped by 
a resistive dynamical coupling to higher wave-numbers. 

Now let us go up the wave-number spectrum considering each decade, say, 
a subsystem. (We imagine a sufficiently huge R, that there are many decades in 
each spectrum range.) As we go through the inertial range, the characteristic 
time of each subsystem is of order (v, k)-l ,  the energy in each subsystem is of 
order (m,)& k-*, and the power output to the next higher subsystem is of order 8. 

The 'damping factor' of the subsystem, the fraction of energy passed on in a 
characteristic ' period ', is of order 

B(V, k)-'/(ev,)*k-* = (k,/k)*. 

Thus, the damping due to dynamical coupling goes steadily down as we rise 
through the inertial range. 

When we get into the dissipation range k 2 k,, a similar argument shows that 
the damping due to coupling with the next higher subsystem continues to go 
down, and with great rapidity since the coupling to higher modes becomes in- 
effective and transfers a rapidly decreasing fraction of the energy in a subsystem. 
In  this range, as in the inertial range, the damping factor associated with direct 
viscous dissipation increases linearly with k (as vk2/v,k); however, it does not 
become critical until k - R, k,, which is far above the range of significant dissipa- 
tion for huge Reynolds numbers. Thus we have the situation that the energy- 
containing range, where viscosity does not act, is approximately critically 
damped, while the range in which viscosity disposes of the energy is very lightly 
damped. As we go up above R, k, the damping due to dynamical coupling continues 
to decrease rapidly (it has long since become extremely small), while the direct 
viscous damping becomes, finally, very large and dominates the mechanics of the 
subsystems. 

The behaviour described seems strange, but there does not appear to be any- 
thing either physically or mathematically inconsistent about it. It arises from the 
non-linearity and complication of the system, and the consequent artificiality of 
dividing it into subsystems. The characteristic frequencies of the subsystems are 
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not really internal parameters, but are controlled by the energy-range mixing, as 
discussed before. We must also keep in mind that each subsystem serves as a kind 
of frequency multiplier for the energy supplied to it. 

The asymptotic identity of time correlation and response functions for the 
inertial and dissipation ranges indicated by the present theory is of considerable 
fundamental interest. It has been shown for many types of conservative systems 
that time-correlation and averaged response functions are identical in an equi- 
librium (detailed-balance) ensemble. In  particular, this is true for a dissipationless 
system closely related to turbulence (Paper I, appendix). In  the present case we 
have found this same behaviour for modes which are very far from a state of 
detailed balance and which dissipate most of the energy lost by the system. It 
seems likely that this is significantly connected with the fact that for these modes 
the effective damping due to both dynamical coupling and direct dissipation is 
very small. 

8. Comparison with experiment 

Our analysis has been based on maximal randomness, exact isotropy, and 
stationarity, and it has been limited to the direct-interaction approximation. 
Furthermore, we have indicated solutions of the resulting equations only for 
extremely high Reynolds numbers. In  order to make a very meaningful com- 
parison with experiment, i t  is necessary to have some idea of the theoretical 
corrections implied by the experimental deviations from the ideal conditions 
listed. It also is desirable to have theoretical estimates of the errors associated 
with the direct-interaction approximation. The latter estimates will be reserved 
for a future paper. The principal question is whether the qualitative results of 
$96 and 7 and the spectrum form (7 .4b)  are consequences also of the exact 
asymptotic theory for high R,. If they are, the errors associated with the direct- 
interaction approximation involve only the value of f ( O ) ,  the quantitative 
behaviour off(k/k,), and the quantitative functional dependence of r(k, T), g(k, 7 )  

on their argument v , h .  Unfortunately, little can be said a t  present on the 
question of corrections for experimental deviations, and we shall attempt only 
a very qualitative discussion. 

We shall not discuss here the deviation of laboratory homogeneous turbulence 
from maximal randomness, except to note that for grid-produced turbulence we 
may expect to  observe downstream regularities of some kind associated with the 
grid spacing. We shall, however, consider briefly the relation between our 
stationary isotropic turbulence and freely decaying isotropic turbulence, which 
possibly can be closely approximated in the laboratory. For R, sufficiently high 
that the asymptotic solution developed in 9 7 has a range of accurate validity, it  
seems clear that the behaviour of this range should be negligibly affected by 
decay, provided enough time has elapsed for the high wave-number structure to 
have been fully established. This follows from the fact that the decay of v, is very 
slow compared to characteristic periods of the range. The spectrum and time 
correlation for the stationary case, therefore, should apply to the free decay cme, 
provided v,, and E are measured within a time short compared to the decay time. 

8.1. The effect of deviations from idealized conditions 
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Since the instantaneous rate of viscous dissipation equals the instantaneous rate 
of decrease of kinetic energy, it should not matter whether E is measured as 

- a(+$)/at or as s,” 2vkzE(k) dk, if accurately isotropic and homogeneous condi- 

tions have been established. 
At lower Reynolds numbers the equivalence of the stationary and decaying 

cases no longer follows, and we must consider also that (7.1) nolongeris necessarily 
an accurate expression of the stationary theory. After the numerical constants 
are evaluated, (6 .5)  may be of value in the qualitative understanding of lower 
Reynolds numbers. 

The role of anisotropy in the present theory is quite interesting. Let us con- 
sider huge Reynolds number homogeneous axisymmetric turbulence. For this 
case the response and time-correlation functions for high wave-vectors can be 
determined in close analogy to the isotropic case, yielding similar Bessel function 
expressions in the direct-interaction approximation. It is easy to see, however, 
that the effective mixing velocity, replacing wo in the arguments, depends on the 
angle between k and the axis of symmetry and is maximum when k is in the 
direction of maximum r.m.s. velocity. The energy transport among a triad k, p, q 
in the inertial or dissipation ranges has a consequent dependence on the orienta- 
tions of these wave-vectors relative to the axis of symmetry. Thus, despite the 
localness of energy cascade, it does not appear likely that the present theory yields 
asymptotic isotropy of energy partition in the inertial and dissipation ranges. The 
geometry of the transport terms is sufficiently complicated that further investi- 
gation is needed to determine whether the anisotropy in the 8 factors actually 
results in appreciable energy anisotropy at high wave-numbers and, if so, whether 
it is of the same or opposite sign as the anisotropy of the r.m.s. velocity 
components. 

As we go to wave-numbers k ;2 R, k,, the transport terms begin to be dominated 
by isotropic factors of the form exp ( - vk2s) in the response functions. In  conse- 
quence of the localness of the cascade process, we should then expect an approach 
to energy isotropy at these very high wave-numbers regardless of possible 
anisotropy lower in the spectrum. 

The presence of inhomogeneity as well as anisotropy brings into question the 
baaic assumptions of the present theory. If, for example, we consider turbulence 
confined within a region not large compared to kzl, the mode density will 
not be high, and we cannot expect the weak dependence property to hold 
accurately.? 

Without further investigation, extreme caution must be used in attempting to 
interpret shear flow experiments on the basis of homogeneous theory. Laboratory 
‘ spectrum ’ measurements involve a kind of ‘ local Fourier analysis ’ and give 
results which depend on the position in the inhomogeneous flow. The Fourier 

t However, the present theory may be adapted to give a valid description of turbulence 
homogeneous in only one or two directions-for example, flow in an infinitely long pipe or 
channel. To obtain closed, determinate covariance equations, weak dependence need be 
assumed only for wave-vectors differing in their axial components ; the phase correlations 
in transverse directions may be retained and determined, along with the mean velocity 
profile. 
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components used in the present theory are not local quantities; they refer to the 
entire flow. Without further justification, we cannot divide into local regions an 
inhomogeneous flow, in which there are necessarily phase correlations between 
pairs even of high-lying Fourier modes, and attempt to treat each region more or 
less independently. It is conceivable that the mixing action of a strong shear 
velocity in one part of the flow may influence the energy balance in high wave- 
number Fourier components which affect a laboratory ‘ spectrum ’ measurement 
made in a different part of the flow. 

Even apart from the interpretation of the present theory, the concept of local 
Fourier analysis is not a simple one. Terms like ‘eddies of wave-number E ’ ,  some- 
times used in discussing turbulence, imply a vagueness of distinction between 
x-space and k-space concepts which can lead to serious inconsistencies. 

We shall now proceed to disregard the cautions just presented and compare the 
asymptotic maximally random, stationary, isotropic theory with real experiments 
including shear flow experiments. It is hoped that the comparison may lead to 
insights regarding the questions which have been raised. A further motivation is 
that the only other course open at  present would appear to be to ignore entirely the 
relation of theory to experiment. 

8.2. Wave-number spectra in turbulent pipe flow 

The highest laboratory values of R, ( >  lo3) appear to have been obtained in 
shear flows. An experimental situation for which very careful measurements have 
been taken is the fully developed flow in a long circular pipe (Laufer 1954). 
Measurements were made by Laufer of the one-dimensional spectra $,(k,), q52(kl), 
$3(kl)  of (twice) the energy in the axial, radial, and circumferential velocity com- 
ponents, respectively, at several stations across the pipe. The results of the 
measurements on the axis are shown in figure 5 .  The one-dimensional spectrum of 
the total kinetic energy $(k,)  = $,(k,) + q&(k1) + $3(kl), for two stations, is shown 
in figure 6. In  most cases the points shown on the latter plot are not experimental 
points but are computed from the curves drawn by Laufer through the original 
experimental points for the three component-spectra. In  both figures 5 and 6, 
wire-length corrections have been applied only to $ , ( E l ) .  The values of Ri, IC, 
and k, shown on figure 6 are computed from vo = 3-4 (12: + 6; $- I2?$ and esti- 
mates of local values of 8. The dissipation rate cannot be determined precisely from 
the measurements, but the computed parameters are not very sensitive to its 
value. Ri and k, probably are not in error by more than 10 % and k, probably by 
not more than 25 yo. The accuracy of the relative values of the component spectra 
may be estimated as about 15 to 20 yo (Laufer, private communication). 

It can be seen from figure 6 that the total energy spectrum follows a ki+ 
law quite closely for a substantial fraction of the range between k ,  and k,. If 
estimated wire-length corrections (Laufer, private communication) are applied 
to q52(kl) and $3(kl), the range of adherence to the ki% law is somewhat extended. 
Within the range where $(k,)  exhibits (k$)-law behaviour, it can be seen from 
figure 5 that there are substantial differences among the slopes of the component 
spectra, the deficiency in excitation of u2 and u3 at low wave-numbers changing 
to an excess, above the isotropic relation to ul, at high wave-numbers. 

34 Fluid Mech. 5 
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Superficially at  least, the behaviour would seem not inconsistent with what 
might be expected on the basis of the asymptotic isotropic results. The total 
energy cascade appears to proceed according to the isotropic law. As the cascade 
goes on, there appears to be a drain of energy from u, to u2 and u3 so that the 
component spectra have respectively greater and lesser slopes than the total 
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FIGURE 5. Energy-component spectre, 4,(k,) ,  q5*(k1), q5a(kl) on the axis of fully turbulent 
pipe flow. The dashed line gives q5*(kl) aa calculated from q5,(k1) using isotropic relations. 
The pipe radius is a = 12.33 om, and the Reynolds number bawd on a and the mean 
velocity on axis is 5 x lo6. After Laufer (1954). 

spectrum. The eventual non-isotropic partition of energy at high wave-numbers 
does not appear too surprising in view of the discussion in 0 8.1. We may note 
that R,,k,, the wave-number at  which the response functions must begin to 
become isotropic, is far above the range plotted. 

In  his interpretation of the measurements Laufer noted that $,(k,) follows a, 
k$ law very closely over a substantial range. This is the inertial range law pre- 
dicted by the Kolmogorov theory for isotropic turbulence, and the result would 
seem to indicate consistency with that theory. Actually, the agreement is not 
very satisfying, as Laufer himself observed. In the centre of the inertial range, 
#,(k,) represents only about 20 to 25 yo of the total energy associated with k,, and 
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the components q5.#J, #3(k1), which contain the rest of the energy, do not follow 
the (-$)-law at all. I n  making a comparison with an isotropic theory it would 
appear more reasonable to consider the total energy spectrum, as we have done 
above. For this spectrum, the ( -$)-law appears to give an optimum straight-line 
fit, and the ( -#)-law appears to lie slightly outside the experimental error. It may 
also be noted that the very fact of the observed anisotropy at very high wave- 
numbers, which is not surprising on the basis of the present theory, seems a com- 
plete mystery on the Kolmogorov theory. 

- Slope = -Q 

-- SIope = - g  

I 
10 1 

FIGURE 6. Total energy spectrum &kl) = ~l(kl)+#&)+#a(kl)  a t  two stations in the 
flow of figure 5. Ri N 15, on axis, N 17 at r/a = 0.3. From data of Laufer (1954). 

It should be emphasized that the discussion above is merely suggestive. The 
cautions expressed in 0 8.1 must be kept firmly in mind in evaluating the argu- 
ments we have just advanced. 

Measurements in the boundary layer on a flat plate at values of @ similar to 
those in the pipe-flow experiment have been reported by Klebanoff (1955). In  
the outer part of the boundary layer a behaviour qualitatively similar to that 
described above wm found; the slope of q51(kl) was steeper, and that of &(k1) 
flatter, than -3. Unfortunately, measurements of $3(k1) were not made. It is 

34-2 
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of interest that the anisotropy at very high wave-numbers found in the pipe flow 
measurements did not appear in this experiment. 

Betchov (1957) has also reported measurements at closely comparable Ri ,  
made in a shear flow of novel character. Only q$(k1) was measured, and it re- 
sembled closely the corresponding function for the pipe flow. No detailed com- 
parison with isotropic theory seems possible in the absence of data on $Jkl) and 
A(k1)' 

I 1 I I I I 
0 0.1 0 2  0.3 0 4  0.5 0 6  

k , k  

k , k  
FIGURE 7. Dimensionless plots of kf+,(k,)  and kf$,(k,) according to Kolmogorov scaling 
(k ,  = R t k ,  = efv-z),  for several grid Reynolds numbers RM.  RM is defined as (mean 
stream velocity) x (grid spacing)/v. After Stewart & Townsend (1951). 

8.3.  Wave-number spectra in grid turbulence 

Grid-produced turbulence appears to  represent at present the closest laboratory 
approach to homogeneity and isotropy. Although Reynolds numbers high enough 
to produce an inertial range have not been described in the literature, it is of 
some interest to examine to what extent the dissipation range spectrum at 
moderate Reynolds numbers obeys the scaling indicated by (7.4b). Figure 7 
shows the results of one-dimensional spectrum measurements by Stewart & 
Townsend (1951)  as plotted and drawn by these authors on the basis of scaling 
indicated by the Kolmogorov theory. Similar measurements have been reported 
by Liepmann, Laufer & Liepmann (1951). Figure 8 shows the curves drawn by 
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Stewart & Townsend through their data points, rescaled according to (7 .4b ) .  The 
plots have been prepared so that the curves for R M  = 5250 are congruent in each 
case. The values of R, correspond to the values of relevant parameters shown 
in the table below: 

RaI RO Rk = R,ko/ka R;' = ko/ka 
2 625 13 2.35 0.18 
5 250 26 2-95 0.11 

10 500 53 3.75 0.07 

I I I I I I I I I 
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FIUURE 8. The curves in figure 7 rescaled according to the present theory. 
The rescaling is defined by Ic, = R$ka, d v f  = R&,V. 

It will be noticed that the curves of both k2,$,(k1) and kf$(k,) fall substantially 
closer fogether with thenew scaling than with the old. In  particular, the systematic 
shift with R M  of the horizontal position of the maxima seems largely absent with 
the new scaling. It should be noted that, while Roko has a definite theoretical 
significance as the wave-number at which vk2 = uok, Ic0 is only nominally the 
wave-number characterizing the energy-containing range. In  this experiment 
most of the energy lies below k, in each case. From the values given in the table it 
would seem not implausible that, particularly in the case of kf$l(kl), the func- 
tions should bear some relation to the asymptotic forms for a substantial part of 
the k-range plotted. However, the values of Ri are too low, and the experimental 
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scatter too high, to permit attaching very much significance to the comparison. 
It must also be noted that detailed measurements on the isotropy of the flow were 
not presented. 

8.4. The response and time-correlation functions 

Direct experimental measurements on the modal impulse-response and time- 
correlation functions g(k, 7) and r (k ,  7 )  do not appear to have been made. In- 
direct information about r(k,  7 )  is obtainable, in principle, from measurements of 
acoustic and electro-magnetic scattering from turbulence, but existing data of 
this kind appear to involve too many unknowns to provide useful estimates. 
However, it appears possible to re-express g(k, 7 )  and r(k,  7) so that fairly good 
indirect estimates of both these quantities for k, < k << R, k, can be made from 
measurements of the one-point, one-time velocity distribution. Work on this is 
still incomplete, but it seems pertinent to include a brief report of the tentative 
conclusions in the present paper. Our discussion here will be confined to the 
isotropic case. 

It seems almost certain on intuitive grounds that for k, < k < R,k, both g(k, 7 )  

and r (k ,7)  are determined by the energy-range mixing action. That is to say, 
they are determined by the non-linear terms in (2.2) for which k’ or k” falls in the 
energy-containing range. Now if our double inequality holds, the characteristic 
fluctuation and relaxation times for energy-range modes will be extremely long 
compared to those for wave-numbers the order of k. Therefore, if we retain in 
(2 .2 )  only the terms cited, we have equations of motion for u( k) and the amplitudes 
in the neighbourhood of k which are linear in the amplitudes in this neighbour- 
hood and in which the energy-range amplitudes appear as effectively constant 
coefficients. These equations then may be handled by the general methods for 
linear systems with constant coefficients. 

The analysis suggested by the last paragraph leads without much difficulty to 
a simple exact asymptotic expression for g(k, 7). The result is 

(8.1) 

where M is the characteristic function associated with the one-point, one-time 
distribution function of any velocity component 6, of the turbulence. M is 
defined by 

g(k ,7 )  = M(k7) (7 2 0, k, < k < Rok,), 

“(a) = exp (iaii1) P(.iil) d6, = (exp (iaii,)), (8.2) 1-1 
where P(6,) is this distribution function (Batchelor 1953, 82.3). 

The evaluation of r(k,  7) by these methods is not so direct. It appears to be 
necessary to appeal explicitly to the maximal randomness condition, which need 
not be invoked to obtain (8.1). The tentative asymptotic result which we have 
obtained is 

which might have been anticipated from (8.1). Neither (8.1) nor (8.3) involve the 
direct-interaction approximation. 

It follows from (8.3) that the frequency spectrum function for wave-number k 
is given by 
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This result has a very simple interpretation: the weight with which any fre- 
quency w appears in the spectrum function is proportional to the probability of 
occurrence of the velocity at which a harmonic component of wave-number L 
would have to be convected to give oscillations of this frequency at a fixed point 
in space. This interpretation must not be taken too literally, however. The energy- 
range mixing is not a simple convection process. 

Measurements indicate that P(CJ is close to Gaussian in a variety of turbulent 
flows (Batchelor 1953, $8.1). For a Gaussian distribution, 

P(G,) = (2n)av;lexp ( - +Gii;l/vg) 

M(a)  = exp ( -  &&x2). and 

For this case (8.3) and (8.4) yield 

T (  k, 7) = exp ( - k V ) ,  (8.5) 

r(k, w )  = (2/n)+ (v,k)-lexp ( - $d/v:kz)), (8.6) 

for the range of E considered. These functions are compared in figures 2 and 3 with 
the results we have previously obtained by the direct-interaction approximation. 
It seems likely that the deviations which appear are large compared to those 
associated with departure of the relevant empirical distribution function from 
exact Gaussian form and give a fairly good picture of the error due to the direct- 
interaction approximation. The comparisons suggest that the oscillations in 
r(k,  7) and the sharp cut-off in t(k, w )  found in $5 are to be ascribed to the direct- 
interaction approximation rather than the physical phenomenon. 

It is of interest that replacing the integrand factors in (7.2) with the corre- 
sponding Gaussian functions (8.5) induces only a small change in OI(L,p, q ) .  For 
either p = q = k or p = k, q = 0 the substitution increases OI(k,p,  q )  by 5 yo and 
for p = q = @, by 10 yo. This might seem to suggest that the direct-interaction 
approximation gives rather accurate results for f (klk,). However, in order to 
decide this, the error in the functional form (4.3) for S(k  I p ,  q )  must also be esti- 
mated. We shall discuss this in a future paper. 

9. Comparison with other theories 
9.1. The Kolmogorov theory 

The Kolmogorov theory? has occupied a central place in thinking on turbulence 
in the past decade because of the intuitive appeal of its assumptions, the eco- 
nomy of its methods, and the approximate empirical support for its predictions. 
Certain results of the present theory appear to differ only slightly from those of 
the Kolmogorov theory: the spectrum law in the inertial range by (k/ko)* and the 
characteristic scaling wave-number in the dissipation range by R;A. However, 
we shall see that the two theories are in fundamental conflict. First, we shall 
point out that the observed structure of turbulence at high R~ynolds numbers 
does not seem to support very well the fundamental physical assumptions of the 
Kolmogorov theory, as distinct from the conclusions of the theory. 

-f A review of this theory is given by Batchelor 1953, Chapter 6. 
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Kolmogorov’s basic assumption (Kolmogorov 1941) is essentially that the 
internal dynamics of the sufficiently fine-scale structure (in x-space) at high 
Reynolds numbers should be independent of the large-scale motion. The latter 
should, in effect, merely convect, bodily, regions small compared to the macro- 
scale. According to the restatement of this hypothesis by v. Weizsacker (1948), 
the dynamical interaction of the u(k) is effectively local in wave-number space. 
The direct action of low-k modes on sufficiently high-k modes is assumed to be 
only a trivial convection effect which does not influence high-k energy dynamics. 
This implies that the transport of energy from the energy-containing range to the 
dissipation range depends on a cascade process whose mechanism is independent 
of the energy-containing range. An intimately related further assumption is that 
the cascade acts like a diffusion process in k-space. This has the consequence that, 
whatever the situation at low k, the k-spectrum should be isotropic and universal 
in form at sufficiently high k. The equivalent assumption in the x-space picture is 
that the velocity structure within any region sufficiently small compared to the 
macroscale should be isotropic and universal in a reference frame moving at  the 
mean velocity of the region (‘local isotropy’). If the assumptions are all valid, 
the dynamical equilibrium at wave-numbers well above the energy-containing 
range must be determined solely by two local parameters: the rate of cascade e 
and the viscosity Y. In  the inertial range, where one assumes E(k)  is independent 
of Y, simple dimensional arguments then yield the Kolmogorov law E(k) cc eSk-4. 

Let us suppose that the fine-structure of turbulence consisted of little patches 
of velocity corrugation, well separated from each other, superimposed on a 
macrostructure which varied slowly and smoothly with position. Then it would be 
very hard to see physically how the Kolmogorov assumption about the action of 
large-scale structure on small-scale could be incorrect. In  the limit of the macro- 
scale very large compared to the patch size the action would of necessity be a 
simple convection. The empirical evidence, however, is quite opposite to this 
picture. A prominent feature of turbulence at  high Reynolds numbers is the 
presence of sharply defined, extended, and tangled vortex sheets and filaments 
(Batchelor 1953, Q 8.4). The high-wave-number Fourier amplitudes are in sub- 
stantial measure associated with these structures, and the transfer of energy 
appears to involve, in part, the stretching and thinning of the sheets and filaments 
by the flow. This behaviour is easily observed by stirring ink into a bathtub of 
water (R,, > lo4 is readily achieved). A typical filament extends throughout a 
substantial part of the turbulent domain. Thus the fine structure does not appear 
to be ‘local ’ in a three-dimensional sense, and the stretching actions indicate that 
the fine-scale dynamics may actually depend on the structure of the velocity field 
over rather large regions. 

The vortex sheets may be thought of as internal ‘boundary layers’ across 
which occur sharp and major changes in velocity. If these structures form a 
prominent feature of the turbulence it seems difficult to attach a definite physical 
meaning to the Kolmogorov notion of a co-ordinate system moving with the local 
mean velocity. It is hard to know what to take as the velocity of this frame in the 
regions of rapid change, which, we have noted, contribute importantly to the 
high-k spectrum. The concept of local isotropy also does not seem well supported 
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by this physical picture. The vortex sheets are intrinsically anisotropic and in- 
homogeneous structures. It is only when averages are taken over substantial 
volumes of the flow, large enough to include many sheets in all orientations, that 
homogeneity and isotropy can appear, if they do at all. It is very important to 
note here that isotropy of space-correlations, for separations small compared to the 
macroscale, does not imply isotropy within typical regions of the$ow which are small 
compared to the macroscale. The correlation functions, even for very small separa- 
tions, are defined by averages over large space regions, or over equivalent en- 
sembles (the former average being the one related to experimental procedure). 

Now let us interpret the Kolmogorov theory in the light of the weak de- 
pendence principle. Let k ,  p ,  q be three distinct modes, all high above the energy- 
containing range, such that k + p + q = 0. The energy exchange among these 
modes is determined by quantities of the type Q = u,(k) u j ( p )  u,(q). Let us 
examine how Q changes with time, By the weak dependence principle 

(Q*Q’) = ( u f ( k )  u?(P) uZ(q) uXk) 4 ~ )  uA(q) )  
(indices not summed). (9.1) 

It follows that the time characterizing the variation of Q must be of the order of 
one of the individual characteristic times for the amplitudes u(k), u ( p ) ,  u(q). 
The latter times would seem necessarily to be of order (vOk)-l, (vop)-l, (voq)-l, 
respectively, corresponding to the sweeping of structures of the given wave- 
numbers by the macro-motion. Thus the weak dependence principle leads im- 
mediately to the conclusion that the time-variation of the rate of energy-transfer 
among high-lying modes is strongly dependent on the parameter vo, which 
measures the excitation in the energy-containing range. 

The Kolmogorov theory implies that the fluctuations in Q induced by the 
energy-containing range, although strong, do not affect appreciably the value 
of ( Q ) ,  which is related to the mean energy-transfer among modes k ,  p ,  and q. 
If so, the fluctuations simply reflect the dynamically insignificant distortion of 
small-scale structures by the slight shear associated with the macro-motion. 
That they arise at all is then an indication of the essential awkwardness of 
representing, in Eulerian k-space, phenomena which are more naturally 
described in quasi-Lagrangian co-ordinates. 

In  the direct-interaction approximation, on the other hand, these fluctuations 
represent the dominant contribution to a relaxation process acting on the phase 
correlation among modes k ,  p ,  and q built up by their direct coupling. Thus, 
they depress the magnitude of ( Q )  and inhibit mean energy-transfer. This 
difference underlies the divergence between the predictions of the two theories. 
As an illustration, we may replace vo in expression (7.2) by [kB(k)]3,  which is a 
measure of the r.m.5. velocity associated with wave-numbers of order E only. 
This has the effect of eliminating the influence of the energy-containing range on 
the relaxation time 8,(k,p, 4). With the change, it may be verified that (7.1) leads 
to the inertial-range law and dissipation-range scaling of the Kolmogorov theory. 

It is hardly surprising that the direct-interaction approximation does not 
reproduce the Kolmogorov theory. The convection-without-appreciable-dis- 
tortion appealed to by that theory involves the ‘co-operative’ action of the 

= (u:(k) u ; ( k ) )  (u?(p)  u ; (p ) )  ( u z ( q )  u L ( q ) )  
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very many triad interactions which link the energy-containing modes with 
pairs of the high-wave-number Fourier components of the convected small-scale 
structures. It is likely to be described poorly in an approximation where the 
various triad interactions are related only through relaxation effects. More 
surprising is the small difference between the spectrum laws of the two theories. 
Whatever may turn out to be the exact inertial range law, this in itself perhaps 
justifies a degree of confidence in the essential soundness of the direct-inter- 
action approximation. It implies that even in the situation assumed by 
Kolmogorov, where the convection effects which the direct-interaction approxi- 
mation cannot represent are very strong, their neglect does not much affect the 
ultimate energy equilibrium. From this point of view our application to the 
high-wave-number range a t  large R, constitutes a rather severe trial of the 
approximation. One might expect improved results at wave-numbers below the 
inertial range, where convection-without-distortion clearly does not occur in 
any event. 

At the present time it seems difficult to decide between the two sets of inertial 
and dissipation range predictions. In  fact, the exact inertial range law may be 
neither k-3 nor k-8. We have pointed out earlier some unrealistic aspects of the 
physical picture usually associated with the Kolmogorov theory. Perhaps a 
more serious drawback to this approach is the difficulty of developing it to the 
point of yielding quantitative predictions beyond the existing dimensional 
results. On the other hand, if the influence of vo on the inertial-range mean- 
energy-dynamics turns out to be an artifact of the direct-interaction approxi- 
mation, the absolute inertial and dissipation range spectrum levels obtainable 
by this approximation may be considerably in error at sufficiently high R,. It 
should be possible to shed some light on these questions by examining the next 
approximation in the sequence described briefly at the end of 5 2.4. 

9.2. Heisenberg’s heuristic theory 
Several authors have proposed models for the transport power II(k) based on 
simple physical analogies (Batchelor 1953, Chapter 6). Of these the heuristic 
theory of Heisenberg (1948) has aroused the most interest. Heisenberg assumed 
that n(k) could be represented as a power dissipation by all wave-numbers 
smaller than k due to the action of an effective ‘eddy viscosity’ which repre- 
sented their coupling to all wave-numbers larger than k. In  analogy to the 
expression for dissipation by real viscosity, he took 

where xis a disposable numerical constant. The eddy viscosity { 1 was obtained by 
dimensional arguments on the basis of the Kolmogorov-v. Weizsiicker hypothesis 
of the localness of k-space dynamics. Because of its dimensional structure, (9.2) 
leads to a kd-inertial range spectrum law. At very high k it  leads to a V-law,  
implying the non-existence of mean-square third- and higher-order velocity 
derivatives. 

The comparison of the eddy viscosity and the present theories is made more 
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illuminating by first modifying (9.2) to yield a k-3 inertial range law; Heisen- 
berg’s basic physical assumption seems independent of the conflict between the 
direct-interaction approximation and the Kolmogorov theory. Accordingly, we 
shall consider the transport function 

where K’ is a new disposable numerical constant. The eddy viscosity {}  is here 
obtained by dimensional considerations under the requirement that it depend 
inversely on vo. The algebraic rationality of (9.3) makes it perhaps more satisfying 
intuitively than (9.2). 

From (9.3) we immediately obtain 

This equation has been written in a form to facilitate comparison with - a n ( k ) / a k  
as given by the right side of (7.1). The time factor (v,,k)-l corresponds to the 8, 
factor in (7.1). The most immediate qualitative difference between the two ex- 
pressions is that (9.4) expresses the total interaction as an integral over pair 
interactions ( k , p ) ,  rather than the triad interactions ( k , p ,  q)  which enter (7.1), 
and which are fundamental to the structure of the original equation of motion 
(3.1). A further difference concerns the sharp distinction in (9.4) between the 
interactions with modes higher than or lower thank. The absorption term involves 
only p < k and the emission term only p > k .  In  (7.1) both sorts of modes enter 
both terms, and the net input appears as the balance of both ingoing and out- 
going contributions from every triad interaction; this more closely resembles 
other dissipative equilibrium situations in statistical physics. 

E(k)  appears as a factor in both the absorption and emission terms of (9.4), 
suggesting that this transport expression does not give the tendency to return 
to equilibrium, upon a perturbation of the spectrum in the neighbourhood of k, 
that was noted in the discussion of (7.1). This peculiarity shows up more clearly 
in (9.3) and also in the unmodified form (9.2). If the equilibrium is disturbed by 
an initial increase of spectrum level of wave-numbers above k, then by (9.2) or 
(9.3) the effective eddy viscosity acting on wave-numbers below k is increased. 
This will lead to  an increased flow of energy from wave-numbers below k to those 
above k which wil l  tend to increase further the eddy viscosity acting on the lower 
wave-numbers. A kind of instability seems to be indicated. On general statistical 
mechanical grounds we should expect precisely contrary behaviour ; an increase 
of excitation in modes above k should lead to a decreased flow of energy to them 
from modes below k, as found in $4. 

The comparisons made above can also be made on the basis of (9.2) but with less 
clarity. For this case the algebraic irrationality of the eddy viscosity expression 
results in greater asymmetry between absorption and emission terms. 

9.3. The an,alytical theories of Heisenberg and Chandrasekhar 

Heisenberg (1948, $5) and Chandrasekhar (1955) have developed analytical 
theories of turbulence based on the approximation that fourth-order moments 



540 R. H.  Kraichnan 

of the two-time distribution of the u(k) are related to second-order moments as 
if the u(k) were independent or, equivalently, that the corresponding x-space 
moments are related as in a normal distribution. We shall call this the quasi- 
normality approximation. It is far more drastic than the direct-interaction 
approximation, for the cross-moments involved. Consequently, we may surmise 
immediately, on the basis of the discussion in 5 9.1, that these theories should not 
yield the Holmogorov theory. This seems to be supported by the attempt of 
Chandrasekhar (1956) to reconcile his theory with the k-0 inertial range law. In  
order to obtain the formal possibility of a space correlation function consistent 
with this law, Chandrasekhar found it necessary to assume that the full space- 
time correlation function for small space-time separations was independent of 
vo in ordinary Eulerian co-ordinates. The Kolmogorov theory requires, instead, 
that this be true in a quasi-Lagrangian system moving with the macro-motion 
(Kolmogorov 1941), and therefore not true in Eulerian co-ordinates. As we shall 
note below a related situation arises in Heisenberg’s theory, 

Heisenberg’s theory properly is appropriate to freely decaying turbulence, but 
its essential structure may be discussed in terms of our present specialization to 
the stationary case. The two cases should be equivalent, in any event, for treat- 
ment of the inertial and dissipation ranges at high Reynolds numbers. The 
theory first involves expressing the triple moment X ( k , r ) ,  defined by (3.5), in 
terms of fourth-order moments by substituting for um(q, t )  a bilinear integral 
expression obtained by integrating (2.2) (with k -+ q, i -+ m) with respect to time. 
Next, the fourth-order moments are expressed in terms of U ( k ,  r )  by means of the 
quasi-normality approximation. This results in a closed equation for U(k ,  7). The 
analysis was carriedout for u = 0, but can bestraightforwardly generalized to u + 0. 

The expression which results for S(E, 7) can be obtained from our result (3.7) by 
(a)  replacing the response functions g(p,  s), g(q, s) with exp ( - vpzs), exp ( - uq2.s); 
( b )  discarding the terms involving a(E,p, q ) ;  (c) retaining from the terms involving 
b(k, p ,  q) only a particular linear combination of the parts which are antisym- 
metric in k andp for r = 0. The alteration of the response functions is equivalent 
to ignoring the effect on them of the non-linear interaction. The discarding of 
terms amounts, on the basis of the present theory, to throwing out most of the 
interaction altogether. This shows up strikingly if one evaluates the contribution 
to r(k,  r ) ,  for high k, due to energy-range mixing, after the fashion in which (5.5) 
and (5.6) were obtained. One h d s  that the dependence of r (k ,  r )  on va disappears 
as klk, -+ co. This result apparently led Heisenberg to the following conjecture: 
Independence of r (k ,  r )  on zio is physically unreasonable in Eulerian co-ordinates, 
and moreover conflicts with the Kolmogorov theory. However, it is just the 
behaviour one would expect, on the Kolmogorov theory, in a quasi-Lagrangian 
system moving with the low4 motion. Therefore, possibly the quasi-normality 
approximation, and the resulting equation of motion (Heisenberg 1948, equation 
(83)), may be appropriate to such a co-ordinate system. The difficulty with this 
conjecture would seem to be that, aside from whether or not the quasi-normality 
approximation is appropriate to a Kolmogorov-type co-ordinate system, it is hard 
to see how making the approximation could automatically effect a transformation 
to such co-ordinates. 
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The theory of Chandrasekhar (1955) was developed by analysis in x-space. 
Expressed in k-space, it differs from that of Heisenberg, as generalized above, 
only in that X(k,  7) is expressed in terms of fourth-order moments by substituting 
a bi-linear expression for @(k, t - 7) rather than for um(q, t ) ,  This gives, however, 
quite a different result from Heisenberg's, thereby indicating the intrinsic in- 
consistency of the quasi-normality approximation. Chandrasekhar's result may 
be obtained from (3.7) by replacing g(k, s) with exp ( - vk2s) and discarding all the 
contributions involving b(k ,p ,  4) .  The terms retained are all rigourously non- 
negative for 7 = 0,  and, in contrast to  Heisenberg's prescription, the theory 
consequently does not yield conservation of energy by the Reynolds stresses and 
pressure forces (Kraichnan 1957). 

Our brief discussion has indicated that in both Heisenberg's and Chandra- 
sekhar's theories the use of the quasi-normality approximation is equivalent to 
discarding essential parts of the dynamical coupling of the Fourier modes. The 
unphysical result for r (k ,  7) on Heisenberg's theory and the major violation of 
energy conservation on Chandrasekhar's seem, in some respects, almost as 
serious as the unphysical time-dependence and violation of energy conservation 
implied by neglect of the third-order moments a t  the outset. We conjecture that 
this points towards a basic property of the dynamical system and that significant 
improvement should not be expected from theories made determinate by ignoring 
higher-order cumulants instead of fourth-order. As the order increases, the 
number of individual cross-moments of the u(k) entering the dynamically 
relevant expressions rises rapidly, and their total importance cannot be expected 
to decrease with increase of order, except for a very short time after a statistically 
independent initial state of the u(k), or at very low Reynolds numbers. This 
situation is connected with the non-linearity of (2 .2 )  which results in phase 
relations among large groups of modes being established by networks of triad 
interactions. The direct-interaction approximation, on the other hand, is not 
equivalent to neglect of cumulants of any finite order. It is an approximation on 
the dynamics, rather than directly on the statistical distribution resulting from 
the dynamics. 

9.4. The theories of Proudman (e: Reid and Tatsumi 
Proudman & Reid (1954) and Tatsumi (1957) make the quasi-normality 
approximation only for the distribution of simultaneous values of the u(k, t ) .  
They are able, thereby, to obtain closed equations for the time change of E(k)  in 
freely decaying isotropic turbulence. No predictions are obtained concerning 
time correlations. The analytical structure of these authors' theories is com- 
plicated, and we shall only indicate very briefly the nature of the relation with 
the present theory for the inertial range at very high Reynolds numbers. It 
should be noted that these theories were primarily intended to describe the 
energy-containing range. 

We shall assume that there exists an inertial range, far above the energy- 
containing range, in which energy transport takes place by local cascade and in 
which the direct effects of viscosity are negligible. In this range we shall assume 
that the spectrum obeys a k-"-law. Then it is not difficult to verify that the 
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approximation of Proudman & Reid and Tatsumi can be used to obtain an 
asymptotic expression for - all (k) /ak at time t which differs from the right side 
of (7.1) only in that 6,(k,p,q) is replaced by 

where E ( k ,  t )  is the value of E ( k )  at time t .  
From empirical knowledge we know that T~ must be of order ( ~ ~ k ~ ) - ~ ,  the 

overall decay time of the turbulence, whereas we have found that 6, is of order 
(w0k)-l for significant triad interactions. If arguments are followed similar to 
those which led to and verified (6.3), we now find instead 

E ( k )  N ( e ~ , k , ) * k - ~  (9.6) 

for the asymptotic inertial range spectrum.t With this spectrum, however, 
2vk2E(k)  is independent of k. This is not inconsistent with the concept of an 
inertial range (which requires 1 < n < 3), but it does seem an unlikely asymp- 
totic property according to present experimental indications. 

The results suggested above are not too surprising. The quasi-normality 
approximation for the one-time distribution is known empirically to be con- 
siderably in error for high wave-numbers (Batchelor 1953, fi 8.2). The appearance 
of 7, instead of 8, in the transport expression would seem to indicate that, as in 
the case of the two-time quasi-normality approximation, the effect of ignoring 
fourth-order cumulants is to discard most of the effect of the dynamical inter- 
action on the time-correlation functions and response functions. The theories of 
Proudman & Reid and Tatsumi do yield exact conservation of energy by the 
non-linear interaction. 
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t Dr Tatsumi has recently informed the author that he also has obtained a spectrum 
which varies as k-2. working from the equations of motion of his theory. 
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